
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THESIS

USING THE PEBB UNIVERSAL CONTROLLER TO
MODIFY CONTROL ALGORITHMS FOR

DC-TO-DC CONVERTERS AND IMPLEMENT
CLOSED-LOOP CONTROL OF ARCP INVERTERS

by

David L. Floodeen

September 1998

Thesis Co-Advisors John G. Ciezki
Robert W. Ashton

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
September 1998

3. REPORT TYPE AND DATES COVERED

Master's Thesis

4. TITLE AND SUBTITLE USING THE PEBB UNIVERSAL CONTROLLER TO
MODIFY CONTROL ALGORITHMS FOR DC-TO-DC CONVERTERS AND
IMPLEMENT CLOSED-LOOP CONTROL OF ARCP INVERTERS

6. AUTHOR(S) David L. Floodeen

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey CA 93943-5000

PERFORMING
ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

The objective of this thesis is two-fold. The first goal is to expand the operational capabilities
of the Ship's Service Converter Module control algorithm for a DC-to-DC converter using the
Universal Controller. The second goal is to investigate the use of the Universal Controller to
implement a closed-loop control algorithm for an Auxiliary Resonant Commutated Pole (ARCP)
power inverter. These power electronic devices are central to the development of a DC Zonal Electric
Distribution System (DC ZEDS) that is scheduled for application in the twenty-first century surface
combatant (SC-21). The development of appropriate control algorithms is a key element to this design
process. The Universal Controller is a digital controller that was developed by personnel at the Naval
Surface Warfare Center (NSWC), Annapolis, Maryland. The basic operation of the Universal
Controller and the Texas Instrument TMS320C30 microprocessor architecture are described, with
emphasis placed on the system control algorithms.

Previous studies have encoded and successfully tested a closed-loop control algorithm for a
DC-to-DC converter. In this research endeavor, this control algorithm is expanded to include various
protection circuits and a Master/Slave paralleling scheme. Finally, a closed-loop control algorithm for
the ARCP inverter is encoded and recommendations for future research are outlined.

14. SUBJECT TERMS dc-to-dc buck converter, auxiliary resonant commutated pole
inverter, universal controller, closed-loop control of power inverters, texas
instruments tms320c30

15. NUMBER OF
PAGES 124

16. PRICE CODE

17. SECURITY CLASSIFICA-
TION OF REPORT
Unclassified

18. SECURITY CLASSIFI-
CATION OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICA-
TION OF ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

11

Approved for public release; distribution is unlimited.

USING THE PEBB UNIVERSAL CONTROLLER TO MODIFY CONTROL
ALGORITHMS FOR DC-TO-DC CONVERTERS AND IMPLEMENT

CLOSED-LOOP CONTROL OF ARCP INVERTERS

David L. Floodeen

Lieutenant Commander, United States Navy

B.S.E.E., San Diego State University, 1987

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

Author:

Approved by:

NAVAL POSTGRADUATE SCHOOL
September 1998

g^Jkc£ -dMrr^N
David L. Floodeen

, j Robert W. Ashton, Thesis Co-Advisor

Jeffrey B. Knorr, Chairman

Department of Electrical and Computer Engineering

in

IV

ABSTRACT

The objective of this thesis is two-fold. The first goal is to expand the operational

capabilities of the Ship's Service Converter Module control algorithm for a DC-to-DC

converter using the Universal Controller. The second goal is to investigate the use of the

Universal Controller to implement a closed-loop control algorithm for an Auxiliary

Resonant Commutated Pole (ARCP) power inverter. These power electronic devices are

central to the development of a DC Zonal Electric Distribution System (DC ZEDS) that is

scheduled for application in the twenty-first century surface combatant (SC-21). The

development of appropriate control algorithms is a key element to this design process.

The Universal Controller is a digital controller that was developed by personnel at the

Naval Surface Warfare Center (NSWC), Annapolis, Maryland. The basic operation of the

Universal Controller and the Texas Instrument TMS320C30 microprocessor architecture

are described, with emphasis placed on the system control algorithms.

Previous studies have encoded and successfully tested a closed-loop control

algorithm for a DC-to-DC converter. In this research endeavor, this control algorithm is

expanded to include various protection circuits and a Master/Slave paralleling scheme.

Finally, a closed-loop control algorithm for the, ARCP inverter is encoded and

recommendations for future research are outlined.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. DC ZONAL ELECTRICAL DISTRIBUTION 1
B. RESEARCH FOCUS 3

H. UNIVERSAL CONTROLLER 7

A. INTRODUCTION 7
B. GENERAL DESCRIPTION 8
C. PRIMARY COMPONENTS 9

1. CPU Board 9
2. I/O Board 11

D. OPERATIONAL OVERVIEW 14

DI. TMS320C30 ARCHITECTURE 17

A. INTRODUCTION 17
B. ARCHITECTURE 17
C. ADDRESS MODES 19
D. PROGRAM DEVELOPMENT AND SUPPORT 20

IV. BUCK CHOPPER APPLICATIONS 23

A. INTRODUCTION 23
B. PROTECTION CmCUITS 25

1.24 volt Control Power Low/Over-Temperature 25
2. Over-Current Sense and Shutdown 26

C. LOCAL/REMOTE SWITCH MODIFICATION 29
1. Specifications 29
2. Application 29

D. MASTER/SLAVE PARALLELING 33
1. Theory 33
2. Application 35
3. Findings 37

V. C PROGRAMMING ISSUES 39

A. INTRODUCTION 39
B. C INTERFACE REQUIREMENTS 40
C. PROBLEMS WITH IMPLEMENTATION IN EXISTING CODE 41

VLARCP CONTROL 45

A. BASIC ARCP INVERTER OPERATION 45
B. OPEN-LOOP CONTROL 46
C. CLOSED-LOOP CONTROL 51

1. Theory 51
2. Application 54

VII. CONCLUSIONS 55

A. SUMMARY OF RESEARCH WORK 55
B. NOTABLE CONCLUSIONS 56
C. RECOMMENDATIONS FOR FUTURE WORK 56

APPENDIX A. SOFTWARE ACCESS AND DOS COMMANDS 59

A. PROGRAM DEVELOPMENT SOFTWARE TOOLS 59

Vll

B. DOS COMMANDS 59
C. BATCH FILES 62

APPENDIX B. BUCK CHOPPER CONTROL CODE 65

APPENDIX C. ARCP CLOSED-LOOP CONTROL CODE 93

LIST OF REFERENCES 113

INITIAL DISTRIBUTION LIST 115

Vlll

I. INTRODUCTION

A. DC ZONAL ELECTRICAL DISTRIBUTION

Downsizing is a reality in the military of today. The United States Navy is

continually tasked with finding ways to meet operational commitments as well as satisfy

the research and development requirements needed to continually upgrade capabilities.

One area the Navy is investigating is the use of a DC power distribution system for the

next generation of ships. The project is referred to as DC Zonal Electrical Distribution

System (DC ZEDS) [Ref. 1]. Figure 1-1 shows a simplified block diagram of a proposed

DC ZEDS system.

C > 7\
GEN 2 DC

PORT DC BUS

1Z
SSCM

RECTIFIER DC

:> DC
LOADS

Zone DC
Auctioneer

Iz
SSCM
—7S

RECTIFIER

* 11

7V

DC

GEN 1 ^>^i
AC

DC

DC

Iz.
SSIM

SSCM
7T

AC
LOADS

C
Iz. STBD DC BUS

£

Figure 1-1 DC Zonal Electrical Distribution System [Ref. 2]

Power distribution under this system is accomplished by rectifying AC into DC

as soon as it is generated. The ship is divided into zones and the DC power is routed to

these zones on two primary DC busses (Port DC bus and Stbd DC bus). Upon entering

the zone, the DC power is stepped down using Ship's Service Converter Modules

(SSCMs) that act as buffers for the zones. The power is then further stepped down using

more SSCMs or converted back to AC using Ship's Service Inverter Modules (SSIMs).

DC power distribution can increase survivability by speeding up the fault detection and

switching process, and because DC ZEDS requires significantly less cabling and

essentially no transformers, it is projected to produce large savings in both the weight

and the cost of next generation ships. [Ref. 1]

The SSCMs are actually buck chopper converters that are used to step down and

regulate the DC voltage entering the zone. The SSIMs are Auxiliary Resonant

Commutated Pole (ARCP) inverters that convert the DC into three-phase (3((>) AC [Ref.

2]. Both SSCMs and SSIMs require feedback control and monitoring to be useful in a

DC ZEDS environment because the systems must be stable and allow for fast transient

response in the dynamic environment aboard U.S. Navy ships. Digital control has

proven to be more flexible due to the ability to modify the control algorithm with

simple software changes vice the extensive hardware changes required in analog systems.

For DC ZEDS to be successful, effective control algorithms for SSCMs and SSIMs must

be developed.

B. RESEARCH FOCUS

The focus of this thesis is on using the Power Electronic Building Blocks (PEBB)

Universal Controller, developed by the engineers at Naval Surface Warfare Center

(NSWC), to expand the operational capabilities of the SSCM control algorithm and to

implement a closed-loop control algorithm for the SSIM. The PEBB Universal

Controller is a two-card digital controller designed to handle the extensive Input/Output

(I/O) requirements needed to control both buck chopper converters and ARCP

inverters. Closed-loop control for a typical ARCP inverter requires the conversion of as

many as 10 voltage and current signals and the generation of as many as 12 different

control signals. These control signals are used to gate on and off the electronic switches

and modify the duty cycle. The Universal Controller has no user's manual. Previous

research [Ref. 3] documented, in part, how the Universal Controller works and how to

implement control algorithms using it. Chapter II of this thesis documents in greater

detail the actual operation of the Universal Controller.

The Universal Controller is based on the Texas Instrument TMS320C30

microprocessor. This is a general purpose microprocessor designed for DSP applications.

Chapter DI delves into the architecture of this chip and how it gives flexibility to the

Universal Controller.

Previous research [Ref. 3] has included the encoding and successful testing of a

closed-loop control algorithm for the SSCM, the buck chopper. Several additional

operational features were desired by NSWC. Over-current protection, under-voltage

protection, over-temperature protection, and the ability to operate the bucks from a

remote front panel were all desired features that were not incorporated in the original

buck control code. Chapter IV of this thesis contains a discussion of the theory and

changes required to implement these features.

The present SSCM closed-loop control algorithm implementation [Ref. 3]

allowed for individual control of multiple buck choppers. Problems developed when

trying to operate these units in parallel at Power Paragen, Inc., Anaheim CA. One buck

had a tendency to take over and try to supply the entire load while the other unit floated

at no load. The changes made to operate the buck chopper converters in a Master/Slave

configuration that provides the proper current sharing required for successful parallel

operation are documented and discussed in Chapter TV as well.

The TMS320C30 has the ability to be programmed in both assembly language

and C. Closed-loop control algorithms use complex mathematical functions to calculate

the desired control signals. The current encoded control algorithms are written in

assembly language. This code is lengthy and very complex. Great benefits would be

derived from using C code functions to implement the control algorithms. C code, being

a high-level language, uses instructions that more closely resemble common mathematical

statements. Using C would greatly improve the readability of the software which

would, in turn, facilitate easier modifications. The possibility of converting parts of the

existing program to C is investigated and reported on in Chapter V.

NSWC engineers encoded an open-loop control algorithm for the SSIM, an

ARCP inverter. Closed-loop control is desirable because it can reduce or eliminate

changes that would occur in output voltages caused by changes in the load or input

voltage [Ref. 4]. Chapter VI of this thesis contains a description of the current open-loop

operation of the ARCP and the implementation of one proposed closed-loop control

algorithm. Finally, Chapter VE contains a summary of research work completed,

notable conclusions, and recommendations for future work.

n. UNIVERSAL CONTROLLER

A. INTRODUCTION

Digital control algorithms have proven more flexible than analog ones. Changes

to digital controllers can be made relatively easily via software modifications. Analog

changes require the removal and replacement of actual components. This can be very

time consuming and expensive. Also, depending on component tolerances, the accuracy

of the analog implementation may be less than acceptable. Digital algorithms, on the

other hand, can be modified by changing numbers in software then reloading the new

program. Any size change can be accommodated with the proper scaling, and accuracy

can be achieved by "fine tuning" the changes in the software.

Closed-loop control algorithms can be very I/O intensive. The ARCP, for

example, has six (6) primary switches that require control signals to turn on and off the

solid-state gates. Also, 3-phase power control implies 3 different phase current and

voltage measurements that need to be sampled and manipulated. Finding an appropriate

digital controller that can handle this many I/O signals is challenging. For this reason,

the engineers at NSWC designed the Power Electronic Building Block (PEBB) Universal

Controller, here in referred to as simply the Universal Controller. PEBB is a generic

term for solid-state switching equipment being developed for Department of Defense

(DOD) systems and Universal Controller implies that this controller is designed to

handle a myriad of applications in addition to those discussed in this thesis.

B. GENERAL DESCRIPTION

The PEBB Universal Controller is comprised of two basic parts, a CPU board

and an I/O board. Figure 2-1 shows a block diagram of the Universal Controller. The

CPU board is based on the Texas Instruments TMS320C30 DSP microprocessor chip

which will be covered in greater detail in Chapter HI. The CPU board also contains

three (3) different types of memory and a microcontroller that directs the interface with

the host PC. The I/O board contains the Analog-to-Digital (A/D) converters that

provide the analog input to the Universal Controller and has several counter/timers used

to generate interrupts and modify the output control signals from the board.

CPU Board

Optical
RS232

87C51
Controller

DIPSW

1KX8
Dual Port
Memory

TMS320C30
DSP

96-Pin
Snap-on Connector

DSP Bus

 C7T
Switching
Freqencv

C/TDuty
Cycle

C/TDuty
Cycle

PLD
Phase A

C/TDuty
Cycle

PLD
Phase B

PLD
Phase C

SS US US To!
Gate Drivers 10 Analog Signals

32K X 32
EPROM

32K X 32
SRAM

Microcontroller Bus

A/D

Local Display

I/O Board

. I

Figure 2-1 PEBB Universal Controller Block Diagram [Ref.5]

Input to the Universal Controller comes from a host PC using the RS232 serial

port on the back of the PC. Output from the Universal Controller is converted to

optical gate control signals by optical transmitters on the I/O board. These signals are

then sent out as control signals to modify switch operation. This provides a level of

isolation between the Universal Controller and the high-power units being controlled.

C. PRIMARY COMPONENTS

1. CPU Board

The CPU board is built around the Texas Instrument TMS320C30 which, as

stated earlier, is discussed in the next chapter. The microprocessor is supported by the

Texas Instrument TI 8751 microcontroller and a memory section. Figure 2-2 shows the

primary components of the Universal Controller CPU board.

microcontroller dual port memory

PROM PROM PROM PROM
TMS320C30

SRAM SRAM SRAM SRAM

Figure 2-2 CPU Board of the Universal Controller [Ref. 3]

The microcontroller is able to communicate both in serial or parallel modes.

Any one of its 32 I/O pins can be addressed as an input, an output, or both. [Ref. 6] This

is what gives the TI 8751 the flexibility to communicate serially with the host PC and yet

read from and write to the dual port memory in parallel.

The TI 8751 microcontroller also contains 4K bytes of Erasable Programmable

Read Only Memory (EPROM) on-chip. This is used to hold the interface program

supplied by NSWC. A copy of this code is located on PCPWR7, a personal computer

located in Bullard Hall room 114. This code is what controls the interface between the

Universal Controller and the host PC. It contains the memory map and instructions

used for loading front panel information from the PC into the Universal Controller on

start-up and it also directs the interrupts generated by the host PC used to initiate and

terminate operation of the controller.

The second major portion of the CPU board is the memory section. The

memory section can be divided into three parts. The three types of memory located on

the Universal Controller are 32K of EPROM, 32K of Static Random Access Memory

(SRAM), and IK x 8-bit high-speed dual port static RAM. The EPROM part of memory

is made by connecting four WSIWS57C256F 32K x 8-bit chips in parallel. Since the

EPROMS have an 8-bit data word and the TMS320C30 uses a 32-bit data bus, an address

decoder is connected to the four WSI EPROMS. This allows simultaneous access to the

four memory chips and provides a 32-bit data word for the CPU. The EPROM memory

is used primarily for storage of the operating program for the Universal Controller.

The static RAM, or SRAM, is made up of four DDT71256SA fast 32K x 8-bit

CMOS chips. Again, these chips are connected in parallel to an address decoder to

provide a 32-bit data word similar to the EPROMs. The SRAM is primarily used for

10

data storage. It stores values such as the sin look-up table used by the ARCP program for

calculating the control signals.

The final type of memory is the IK x 8-bit high-speed dual port static RAM. It is

connected between the microcontroller and the microprocessor. This memory is used to

store information sent to the Universal Controller from the host PC until it is needed or

until it can be loaded into the SRAM. This information includes, but is not limited to,

command information that directs which algorithm to run, maximum and minimum

currents and voltages, reference information used by the control algorithm, and the

control constants needed by the control equations. Because the Universal Controller

communicates serially with the host PC, access to this information is delayed a relatively

long time. Using the microcontroller to direct this interface and load this information

into the dual port memory for later use by the microprocessor greatly accelerates this

process. A more in-depth discussion of the specifics of the Universal Controller's

memory is available in Chapter HI of Reference 3.

2. I/O Board

The I/O Board of the Universal Controller can be divided into two main

functional parts, an analog-to-digital interface portion and a counter/timer portion.

Figure 2-3 shows the key components of the I/O board of the Universal Controller.

The analog-to-digital interface part consists of 11 A/D converters used to convert

voltage and current signals into digital words that can be used by the microprocessor.

The counter/timer portion of the I/O board is made up of 4 counter/timer chips that

contain 3 counters each and are used for various timing applications needed for control

algorithm implementation.

11

Q- 12 optical transmitters ►

ADC
ADC

ADC

ADC

INTO

O/T O/T O/T O/T

PLD

ADC

ADC

ADC

ADC

C/T4

I INT1

PLD

C/T3

ADC

ADC

on O/T O/T O/T

1 INT2

PLD

1'

cn-2

C/T1

ADC

■ 10 analog inputs

Figure 2-3 I/O Board of the Universal Controller [Ref. 3]

The analog-to-digital interface is made up of 11 Maxim 500kbps A/D converters.

Ten of these 12-bit converters are used to convert sensed voltages and currents that are

imported to the control board from the SSCMs or SSIM. One is reserved for

conversions of on-board values needed for different types of operation. Five memory

locations are reserved for the A/D converters. Since the TMS320C30 uses 32-bit words,

two (2) 12-bit A/D words can be stored in each location. Initiating a read of an A/D

converter's memory location will read the value of the last conversion and initiate a new

one. The first read is always discarded because it is the result of a previous, or time late,

data sample. The second read represents a more real-time sample of the desired data and

is saved for computations. Each conversion takes 2.6 usec which is considerably slower

than the 60 nsec instruction execution time for the microprocessor. To allow for

complete conversions, there is a wait loop or delay time programmed into the code

12

following each A/D read. Specifics on data step size and digital word selectivity of the

A/D converters can be found in Reference 6.

Four (4) Harris 82C54 counter/timers are located on the I/O board. Each 82C54

contains 3 counters that can be set up in various modes of operation for use by the

Universal Controller. The first counter/timer is operated in a rate generator mode. This

counter/timer functions as the switching frequency timer. The desired switching

frequency is programmed from the PC and converted to a count based on the clock

speed and then loaded into the counter.[Ref. 3] The other two counters located on the

same chip are loaded with the same switching frequency count only delayed either by

120 degrees or 180 degrees of switching period, depending on the application. At a

20 Khz switching frequency, 120 degrees of delay equates to 16.7 msec and 180 degrees of

delay is 25 msec of difference between the first counter and the next. These counters will

generate interrupts with the proper phase shifts needed by the Universal Controller to

initiate sampling and run the control algorithms.

The other three (3) Harris counter/timers are used as hardware retriggerable one-

shots. Adjusting the count in these three (3) counters changes the duty cycle of the

controlled solid-state switches. The duty counts calculated by the control equations are

loaded into these counters. The output pulses of these three counters go to optical

transmitters via three (3) PALs that convert the timer outputs into the necessary control

signals for the SSCMs or SSM switches. Further details on the actual loading of these

counter/timers and count calculation details can be found in Reference 7.

13

D. OPERATIONAL OVERVIEW

The process of operating the Universal Controller can be divided into several

steps. The EPROMS are programmed, loaded into the Universal Controller CPU

board, and power is applied. The next step is to load the operation and control values

from the host PC and begin operation. Once the program is running, phase interrupts

generated by the switching frequency timer will run the control algorithms. The

Universal Controller will continue operating in this interrupt driven mode until the unit

is shut down.

Operation begins with loading the operating code for the microprocessor onto

the EPROM's. To do this, the code is assembled, linked, converted to the proper format

and "burned" into the PLDs. The assembler is loaded on PCPWRP-8 located in Bullard

Hall room 114. This is an older PC that uses DOS 3.x as an operating system. This

machine is still used to assemble the code because it also has the ALL-03A Universal

Programmer and Tester attached to it which programs the WSI PLDs. This allows the

code to be assembled and loaded onto the PLDs all on the same system. To make the

task of programming chips easier, batch files have been created. A batch file is a DOS file

that contains a listing of executable instructions. To use a batch file, simply type the

name of the file and it will execute the necessary instructions. Appendix A contains a

listing of DOS commands and instructions for creating, modifying, and using batch files

to assemble the code and load the executable object file onto PLDs.

Once the code is loaded, the four (4) PLDs are inserted into the four (4) PROM

slots [Fig. 2-2] as U5, U6, U8, andU9 on the CPU board. Then, when power is applied

to the Universal Controller, the software program initializes the microprocessor, the

14

memory map, the counter/timers, and the interrupt structure and then waits for a "unit

on" interrupt (interrupt 3 in the code) from the host PC. Reference 3 describes in detail

the operation of the host PC and associated software. Figure 24 illustrates the program

flow. The "unit on" interrupt starts the operation of the control algorithms. The front

panel values are read and loaded into the dual port memory, the counter/timers (C/Ts)

are loaded, the rest of the interrupts are enabled and the unit then waits for a phase

interrupt to occur.

Initialize the
microprocessor,

memory, and counter/
timers

Load constants from
host PC, load C/Ts,

enable interrupts

Run the apropropriate
interrupt subroutine to
implement the control

algorithm.

Figure 2-4 Program Flow for the Universal Controller

15

Interrupts drive the system. The interrupts occur with the correct phase

relationship, and at the proper sampling rate determined by the switching frequency

loaded in from the host PC. The interrupt subroutines sample the required voltages and

currents; the microprocessor manipulates the data and calculates the duty cycle changes

needed to produce the proper outputs. The counts loaded into the counters/timers that

control the switching period of the IGBTs are modified. The outputs of these counters

produce the control signals that are converted to optical signals and sent out to the

SSCMs or SSIM. Again, all of these actions are controlled by the program run by the

TMS320C30 microprocessor. The architecture of the TMS320C30 is discussed in the

next chapter.

16

III. TMS320C30 ARCHITECTURE

A. INTRODUCTION

The TMS320C30 is the heart of the Universal Controller. It is a high-speed

general-purpose microprocessor produced by Texas Instruments. It has an architecture,

instruction set, and support system conducive to real-time digital signal processing (DSP)

and ideal for application as the center piece of the Universal Controller. The

TMS320C30 has a 60 nsec single cycle execution time that gives it the speed to execute up

to 50 MFLOPS [Ref. 8]. Many functions that are often done with software are

performed in hardware by the C30. This architecture allows a high level of parallelism

to support pipelining which increases speed. The TMS320C30 supports multiple

addressing modes. Six different types of addressing are available in five different modes.

This gives the C30 the large amount of versatility needed to implement complex control

algorithms. Texas Instruments provides several support programs with extensive

documentation to aid in system development using the TMS320C30. It is this high-speed

architecture, the flexible addressing modes, and the extensive support systems that makes

the TMS320C30 ideal for use in the PEBB Universal Controller.

B. ARCHITECTURE

The TMS320C30 uses a register-based architecture. It consists of 12 control

registers, 8 extended precision registers (also called accumulators) and 8 auxiliary

registers. This register system give the C30 the flexibility to handle complex tasks using

registers for storage. By decreasing the number of times the CPU needs to access

17

memory, the overall speed of the system is increased. The TMS320C30 also contains

two auxiliary register arithmetic units (ARAU) that are used strictly for address

calculations. The ARAUs can generate two (2) different addresses in a single clock cycle

[Ref. 8]. They are used to calculate complex addresses such as addresses with

displacement or addresses used in the circular addressing mode which are discussed in a

later chapter. Being able to separately and simultaneously calculate memory addresses

allows a great deal of pipelining. Pipelining is the overlapping of instructions being

executed by the microprocessor which greatly increases speed of operation. In the case of

memory access, using ARAUs to calculate memory addresses frees up the ALU to

perform other tasking while the C30 is reading from or writing to memory. An added

benefit of using ARAUs comes from freeing the other microprocessor registers, which

would normally be used for memory address calculations, to be used as needed elsewhere

in the program.

In addition to the flexible register system, the TMS320C30 has other pieces of

hardware that add to its overall speed. The C30 has a full function ALU that performs

operations on 32-bit integers and 40-bit floating point data in a single clock cycle. There

is also a Barrel shifter capable of performing up to 32-bit shifts in a single cycle which

adds great flexibility for bit manipulation instructions. Finally, the TMS320C30 has a

parallel floating point/integer multiplier. This multiplier allows floating point

operations to be performed in parallel with ALU operations. The inputs to the

multiplier are two (2) 32-bit floating point numbers and the result is a 40-bit floating

point number [Ref. 8]. The instruction set of the TMS320C30 is written to support

parallel instruction execution so programs can easily be written to take advantage of this

18

parallel architecture. Simultaneous use of the single cycle ALU, Barrel shifter, and

parallel multiplier are possible in software [Ref. 8].

The registers, the ALU, and the parallel multiplier are all supported by an

extensive 32-bit internal bus structure designed to allow a great deal of instruction

overlap in execution. This bus structure is what enables the parallel instruction set. In

addition to two (2) ARAU address buses and two(2) separate data busses that connect

CPU registers to memory, another set of separate address and data busses are used for

peripherals and yet another for Direct Memory Access (DMA). It is this extensive bus

structure supporting the large amount of paralleling hardware and the flexible register

system that makes the TMS320C30 well suited for use in the Universal Controller.

C. ADDRESS MODES

Much of the flexibility of the TMS320C30 comes from the instruction set that

supports it. This instruction set is quite powerful due in part to the numerous addressing

modes available for use. The C30 supports five(5) different addressing modes and six(6)

types of addressing. Table 3-1 shows a listing of the different addressing modes and types

usedbytheTMS320C30.

Five Addressing Modes Six Addressing Types
General Addressing Modes Register Addressing
Three-Operand Addressing Modes Direct Addressin £.
Parallel Addressing Modes Indirect Addressing
Conditional Addressing Modes Short-Immediate Addressing
Circular Addressing Modes Long-Immediate Addressing

PC-Relative Addressing
Table 3-1 TMS320C30 Addressing Modes and Types

19

in

An addressing mode is a grouping of instructions based on the syntax used when

writing code. An addressing type is a grouping of instructions based on how data is

accessed from memory or registers. Chapter 5 of Reference 8 provides a complete and

thorough description of each mode and type of addressing. Not every type of addressing

is available in every mode. For instance, the Three-Operand Addressing Mode allows

only register addressing and indirect addressing because of the fields available in the

instruction word. Examples of each mode and type of addressing can be found in

Appendix B (the code). Circular addressing plays a very important role in the

implementation of the control algorithms discussed in Chapter VI and will be covered

more detail there.

D. PROGRAM DEVELOPMENT AND SUPPORT

Texas Instruments provides an excellent support system for the TMS320C30

microprocessor user. Numerous resources are available to aid in the design,

implementation, and debugging processes. Figure 3-1 shows the TMS320C3x

development environment supported by products from Texas Instruments.

Software tools available include an Assembler/Linker allowing programming in

assembly language, an ANSI C Compiler so C source code may also be used, and a

TMS320C3x Simulator to allow for source code debugging of programs. The

TMS320C3x Simulator was used extensively during the coding portions of this thesis to

test code prior to EPROM programming. All three of these software products are

loaded on PCPWR 8 located in Bullard 114. Appendix A contains an explanation of

how to access and run the Assembler, Linker, and Compiler by using DOS commands

20

and batch files. Further information concerning the specific features provided by these

products is available in their respective reference manuals [Ref. 9 and Ref. 10] which are

also located in Bullard 114. The TMS320C3x Simulator is described in Reference 11.

Included in this manual are installation instructions and an operational tutorial that

proved quite helpful.

C Source
Files

C Compiler

Assembler j
Source J

Macro
I Source Files

\7

Assembler

Archiver

I
Iz
COFF

Object File

rts30.lib

Archiver

Macro
Libraries

other object |_
libraries

\7

Linker

„ \7,
Executable

COFF
Object File

Object
Format

Converter

Simulator

\7

TMS320C30
EPROM

Programmer

Figure 3-1 Development Support for the TMS320C3x [Ref. 8]

Other software products available and shown on Figure 3-1 are an Object Format

Converter vised to convert executable code into a format compatible with PLD

programming and an EPROM Programmer to do the actual programming of PLDs.

21

Again, these products are loaded on PCPWR 8 in Bullard 114. Use of the Object Format

Converter is addressed in Appendix A of this thesis and a complete description of how to

use the EPROM Programmer can be found in Appendix C of Reference 3. Also

available from Texas Instruments but not shown in Figure 3-1 is an XDS Emulator. This

is a hardware device that allows full speed program execution of TMS320C3x programs.

The Power Systems Lab at the Naval Postgraduate School (NPS) does not have this piece

of hardware so it will not be discussed in detail here.

As has been shown, numerous resources are available from Texas Instruments to

aid in the development of a TMS320C3x system. The C30 has a flexible instruction set

with many addressing modes to allow flexibility in programming control algorithms.

The architecture utilizes extensive paralleling to provide the speed needed for DSP

control algorithms. The utilization of these characteristics as applied to buck chopper

control is discussed in the next chapter.

22

IV. BUCK CHOPPER APPLICATIONS

A. INTRODUCTION

A major component of the DC ZEDS system is the Ships Service Converter

Module. The SSCM is a feedback-controlled buck chopper used to step down a DC

voltage to a lower level. Figure 4-1 shows a basic schematic of a buck chopper. A buck

chopper uses an electronic switch to "chop" an input DC voltage and an LC-filter to

eliminate the high-frequency components to produce a lower, average DC value.

_^

L
> +

t Vout d [.. Switch

Z
Diode

c -
R <

Figure 4-1 Buck Chopper Basic Schematic [Ref. 3]

In present Navy shipboard designs, the electronic switch is an Insulated Gate

Bipolar Transistor (IGBT). Control signals applied to the gate of the electronic switch

change the duty cycle of the switch and change the average DC voltage out. Figure 4-2

illustrates the affect that the duty cycle of the switch has on one average DC voltage out.

Figure 4-2 Average DC Voltage from a Buck Chopper [Ref. 3]

23

For continuous inductor current, the ideal steady-state relationship is given by

V„=DSS*E (4-1)

where

Dss = steady-state duty cycle (t0„/Ts)

E = input voltage

Further details on buck chopper operation are listed in Reference 3.

Previous research developed a closed-loop control algorithm for the SSCM. The

Universal Controller has enough I/O capability to simultaneously control 2 buck

choppers. Reference 3 details single and dual buck chopper control. System integrators

at NSWC required some modifications to the software control that involved

incorporating additional features not currently available. This chapter addresses the

added under-voltage, over-temperature and over-current protection algorithms and

documents the changes to the assembly code provided in Reference 3. The next section

describes how these changes were implemented. Another added feature was the

Local/Remote switch. Section C of this chapter outlines the changes to the interrupt

structure and the code required to allow operation of an L/R switch. Finally, the buck

choppers must be capable of operating in parallel and sharing the load proportionately.

Section D addresses this issue and describes the changes made to implement a

Master/Slave type control algorithm.

24

B. PROTECTION CIRCUITS

1. 24 volt Control Power Low/Over-Temperature

Self protection requirements were established by personnel at NSWC for SSCM

control operation. These requirements consisted of a 24 volt (control power) low

shutdown, an over-temperature shutdown, and an over-current sense and shutdown.

These changes needed to be incorporated in software. In the cases of 24 volt low and

over-temperature, these changes merely consisted of reading a status words in from an

external sense board that monitored these conditions and comparing the result to a word

that corresponds to an admissible condition. The output from the sense board is

connected to a general purpose I/O jack labeled connector JP-1 on the Universal

Controller.

BitO over-temperature slave

Bitl over-temperature master

Bit 2 under-voltage slave

Bit 3 under-voltage master

Table 4-1 Protection Circuit Bit Assignments

Table 4-1 shows the bit assignments used for the general purpose I/O connector

on the Universal Controller. Memory address location 804500h (d_output) is associated

with the general I/O port and was used to test for errors. Only the four (4) least

significant bits needed to be checked, so the rest were masked out. Since the requirement

was for any one of the fault conditions to shut down the bucks, only one compare was

25

needed. All four bits were tested at once. If any one of them indicated an error, the

system was shut down. The following code was added to interrupt subroutine 0 (isrO):

LDI @d_output,ARO
STI *AR0,R0
AND 000fH,R0
LDI @cmd_ad,R4
CMPI 0fH,R0
BNE R4

set pointer to Gen I/O
R0 = gen_I/Oword
mask all but 4 lsbs
Jump target if needed for shutdown
see if word is good
Shuts down Bucks

Interrupt subroutine 0 was selected as the place to add the protection code

because isrO will run in both local or remote mode. Local and remote modes of

operation are explained in a later section. The third protection circuit code, over-current

sense and shutdown, was placed in isrO for the same reason.

2. Over-Current Sense and Shutdown

The over-current sense and shutdown code was designed to monitor the average

over-current and shut down the system whenever the average over-current exceeded

150% of rated current. The problem caused by over-current is that the heat that builds

up in the solid-state switches has no time to dissipate. As the average over-current

increases, the operating temperature of the device rises and eventually the component

fails. But, when the heat has a chance to dissipate, indicated by when the average over-

current decreases, the components have a chance to recover and system shutdown is not

required. The average over-current was calculated by integrating the over-current over

time. This was accomplished by encoding the following equation:

'over-current average ~ J\oul ~ * LVjUl *~*-)

where 116 represents 100% rated current in amps.

26

The actual encoding of the integral required several steps to accomplish. The

integration was to be performed using the trapezoidal integration method as explained in

Reference 3. Several lines of code and some new variables and constants had to be

inserted to implement the integration digitally.

The first step in encoding the over-current sense and shut-down code was to

create a variable named T/2 that is equal to one-half the switching period. This value is

calculated in the cmd 10 subroutine of the buck chopper code provided in Reference 3

but was not saved for later use. The following line of code was inserted to accomplish

this.

STF R0,*+AR3(tau_2) ; Store T/2

After saving T/2, several other variables and constants needed to be created.

Table 4-2 contains a listing of the added constants and variables and their initial values:

full 116.0

limit 58.0

io_m_116 0.0

trip_m 0.0

io_s_116 0.0

trip_s 0.0

Table 4-2 Added Variables for Over-Current Sense and Shut-Down

The constant 'full' represents 100% of rated current while 'limit' represents the

maximum amount of average over-current allowed. The terms 'io_m_116' and

'io_s_116' are used to store the output over-current or (ioul — 116.0) for the master and

27

slave buck choppers respectively. The Riemann sums or average over-currents for the

master and the slave are stored in 'tripjm' and 'trip_s'.

The final step involved encoding the integral. Appendix B contains the entire

code for the buck choppers with the over-current sense and shut-down portion inserted

in isrO. Since the code for the master and the slave functions exactly the same, only the

code for the master is outlined here. First, the value of 'full' is loaded into the

microprocessor's general register seven (R7), then it is subtracted from the output current

of the master. This creates the value of 'io_m_116[n]' which is stored for use in the next

cycle as 'io_m_116[n-l]'. Next, the previous value of 'io_m_116' is added to the current

value and multiplied by T/2\ The result represents the change in the average over-

current for this small portion of time. This integral change is added to the previous total

to produce the Riemann sum. If the sum is negative, the sum is reset to zero which

assures a non-negative integral. The sum is stored for use during the next cycle and then

compared to the limit. If the limit is exceeded, the subroutine branches to the cmd 0

subroutine which shuts down the system. If the limit is not exceeded, the subroutine

exits this portion of code and resumes normal operation.

After coding the protection circuits, the next change provides for a Local/Remote

(L/R) switch for system control and a front panel potentiometer adjustment for reference

voltage in Local mode.

28

C. LOCAL/REMOTE SWITCH MODIFICATION

1. Specifications

System integrators at NSWC requested that the buck choppers be equipped with

some sort of front panel hard-wired controls to aid in troubleshooting and maintenance.

A Local/Remote (L/R) switch that can select control of the buck choppers from either a

front panel (Local mode) or from the host PC (Remote mode) was hard-wired in. The

system needed to be able to be initialized and run in either local mode or remote mode

and switched from one mode to the other during operation. When switched from mode

to mode during operation, the system needs to shut down and restart in the new mode of

operation because switching from one mode to the other would not be a "bumpless"

transition. Two (2) voltage potentiometers were also connected to the front panel. They

provided a course and fine adjustment for the reference voltage when the units were

operating in Local mode. Software changes were required to enable operation of the

front panel.

2. Application

In order to enable the front panel, the TMS320C30 had to be able to recognize

and monitor the position of the L/R switch. Bit 5 of the general purpose I/O port, used

previously by the protection circuits, was used to carry the L/R switch position. The

reference voltage potentiometer signals were added together and sent as one input to the

general purpose I/O port. This voltage was sent to an onboard A/D converter to create

a voltage word usable by the Universal Controller. Once the TMS320C30 could access

this information, changes to the software were made so it could process this information.

29

The normal program flow for the buck chopper control program was discussed

in Chapter 2. As mentioned there, after initialization of the microprocessor, the

program waits for an interrupt from the host PC. When the interrupt (interrupt 3) is

received, the control values are loaded in from the PC, the Universal Controller

initialization is completed and the program waits for phase interrupts to start controlling

the system. When not processing an interrupt, the program is in a No Operation (NOP)

loop waiting for the next interrupt. It continues this operation until it receives an

interrupt from the PC to shut down the system. This defines remote operation. For

local operation, the Universal Controller reads the reference voltage from the front panel

potentiometers, uses this Vref to calculate the changes to the duty cycle and therefore

control the system. In order to start up the system in Local mode, a table of default

control values had to be loaded into memory. Then, when starting up in Local mode,

this table would be read instead of the control values from the host PC. As previously

mentioned, switching from one mode to the other needed to cause a shut down of the

system and a restart in the proper mode. Now that the modes of operation have been

defined, the algorithm dictating how the Universal Controller monitors the L/R switch

position and transitions between modes must be discussed.

It was determined that the interrupt structure of the control program would have

to be changed. The Universal controller needed to check the L/R switch position on

initial power-up and monitor its position throughout the entire operation of the

program. It could no longer just wait for an interrupt from the PC. This created two (2)

different start-up scenarios that had to be accounted for in the code, either start-up in

Local mode or start-up in Remote mode. The Universal Controller needed to be able to

30

recognize a switch change from Local to Remote or vice versa. An internal timer

interrupt was set up to check switch position. The previous switch position was saved to

provide the ability to compare current position (sw[n]) with the previous position (sw[n-

1]). This created four (4) possible run-time scenarios that also needed to be programmed

into the code:

1) Switch previously in Local, stays in Local.

2) Switch previously in Local, switched to Remote.

3) Switch previously in Remote, stays in Remote.

4) Switch previously in Remote, switched to Local.

The interrupt structure and program flow were changed to cover all of the

possible scenarios. Figure 4-3 shows a block diagram of the modified program flow

allowing for L/R switch operation. The code is enclosed as a portion of Appendix B.

On initial power-up, the program initializes the microprocessor and then checks

the position of the L/R switch. If in Remote, the program functions exactly as it did

before. It waits for an interrupt 3 from the PC, continues the initialization process, and

waits for phase interrupts. If the switch was in Local when checked, the program jumps

to a routine that loads the default table into memory and then continues the program,

waiting for interrupts. When an interrupt is received, if it is a phase interrupt (i.e. intO),

the program runs the appropriate control algorithm encoded in the interrupt subroutine

as before. Only if the interrupt is from the internal timer does the code change again.

31

Local

Load Default values
from memory and

continue

Local

Initialize the
Microprocessor

Local-Local

Update Vref
Ramp if needed

RETI

Wait for an
interrupt

L/R Switch
Interrupt from

internal timer 1

Remote

Wait for interrupt from
PC

When interrupt 3 is
received, load

control values from
PC and continue

Phase Interrupt

Perform control
algorithm

Remote

Local-Remote

Shut down
Restart in Local

Remote-Remote

RETI

Remote-Local

Shut down
wait for command

from PC

Figure 4-3 Program Flow with Local/Remote Switch

When an interrupt is received from the internal timer, the timer 1 subroutine

takes over. First, it reads the previous switch position from memory then gets the

current switch position. Zero (0) is used for remote and one (1) for Local mode. From

32

there it branches to the appropriate section based on current switch position. Once in

the appropriate section of code, either Local or Remote, it compares the current switch

position with the previous switch position to determine which of the four (4) run-time

scenarios the system is in. The bottom of Figure 4-3 shows a brief synopsis of what is

done for each of the four (4) cases. If in Local and previously in Local, the program

updates Vref by reading in the front panel voltage, initiates a ramp-up function if Vref

changed by more than 10 volts, stores the new Vref and returns from interrupt. If in

Local and previously was in Remote, the program branches to the cmd 0 subroutine and

shuts down the system. It then starts back up in Local. If in Remote and previously in

Remote, the program merely returns from interrupt. Finally, if in Remote and

previously in Local, the program branches to cmd 0 again to shut down the system and

restarts waiting for an interrupt 3 from the PC to run in Remote mode. By using the

TMS320C30's internal timer 1 to generate interrupts to check L/R switch position

throughout operation of the system and then changing the interrupt structure to look for

this interrupt, Local/Remote switch operation was encoded into the Universal

Controller code. The only modification left to add for this thesis research involved

encoding a Master/Slave algorithm for parallel operation of the buck choppers.

D. MASTER/SLAVE PARALLELING

1. Theory

The final requirement from NSWC was to investigate and develop a paralleling

algorithm that did not require droop. NSWC personnel wanted to be able to connect

two (2) 100 kW units together in parallel to create a single 200 kW unit. Reference 3

33

contains an algorithm for paralleling two (2) buck choppers based on decreasing the

reference voltage specified by a unit as the unit output current increases (droop). The

droop method worked but wasn't accurate enough for the 200 kW parallel application.

Personnel at NSWC wanted current sharing accuracy greater than that attainable

through the droop method and wanted to eliminate the droop or "sag" produced in the

voltage as load increased. To correct this problem, a Master/Slave control algorithm was

developed.

The basic premise behind the Master/Slave algorithm was to use a modified

multi-loop feedback with a steady-state DC term, a Proportional plus Integral (PI)

controller on the voltage, and a Proportional term on the current to calculate a duty

cycle for the Master buck chopper. Input and output voltage can be established at one

node because the buck choppers are in parallel.

Kj = V»* (4-3)

K»IA = Ku,a (4-4)

However, the individual inductor currents must be summed and the individual

output currents must be summed to establish base inductor and output currents.

iL=h\+h* (4-5)

loul =loul\ ■*"'o»/2 (4-6)

The Slave buck chopper duty cycle then mimics the Master's. An Integral term is

added to remove current error between the Master and the Slave, and a proportional

term is added to maintain stability. Equations (4-7) and (4-8) show the control equations

implemented using the Master/Slave scheme.

34

Dmasler = Dss -K{Vol -Vref)-hn \(VoX -VKf)dt-h{(iLl + /„)-(/., +i02)} (4-7)

Dslme = Dmaster + k J(zol - io2)dt - kp (IO1 - io2) (4-8)

where,

^master= Master Buck duty cycle Dss = steady-state duty cycle

hv = voltage gain Vol = voltage out from Buck one

Vre, = reference voltage hn = voltage integrator gain

hj = current gain iLl = Buck one inductor current

iL2 = Buck two inductor current io] = Buck one output current

io2 = Buck two output current kp = proportional gain

Dslave = Slave Buck duty cycle k = current integrator gain

2. Application

To implement the Master/Slave algorithm as efficiently as possible, much of the

previous control code and interrupt structure was retained. Much of the code was

written by Mr. Roger Cooley, an engineer for NSWC in Annapolis MD, with

modifications made at Naval Postgraduate School to allow testing on the 20 kW units in

the Power Systems Laboratory. Figure 4-4 documents the program flow for controlling

two (2) buck choppers.[Ref. 3] The two bucks are controlled by the phase interrupts

routed through PLD A and PLD B. The interrupts occur 180 degrees out of phase, or

35

every 25 msec, allowing the Universal Controller to monitor and control one (1) buck

chopper at a time.

PLD A interrupt
routine PLD A wait for interrupt PLDB

PLD B interrupt
routine

sample voltages
and currents, load
previous Vd2fn-1]

and Vdint2[n-1]

CALL mode 10
call

return

load duty cycle
into C/T3's
counter(2)

register

calculate duty
cycle

sample voltages
and currents, load
previous Vd1[n-1]
and Vdint1[n-1]

call

return

check duty clycle
for proper range

CALL model 0

load duty cycle
into C/T2's

counter(2) register

store Vd2[n] and
Vdint2[nJ

clear interrupt
-► return from interrupt

store Vd1[n) and
Vdint1[n]

clear interrupt

Figure 4-4 Program Flow for Dual Buck Chopper Operation [Ref. 3]

The actual designation of which buck would be the Master and which would be

the Slave is purely arbitrary. Interrupt subroutine 0 was modified to control the Slave

and interrupt subroutine 1 was modified for the Master. The actual encoding of the

algorithm, the integration etc., was performed as it was in Reference 3. The program

flow was changed as illustrated in by Figure 4-5.

36

PLD A interrupt
routine c PLD A wait for interrupt PLDB

PLD B interrupt
routine

Master Slave

sample voltages
and currents, load
terms needed for

integration,
Vd2[n-1] and
Vdint2rn-1l

•s,^-

CALL model 0

model 0

sample voltages
and currents, load
terms needed for

integration

call

return

load Master duty
cycle into CfT3's

counter(2)
register

calculate Master
duty cycle

S/^

update Slave duty
cycle as needed

check duty clycle
for proper range

^^-

load Slave duty
cycle into C/T2's

counter(2) register

store Vd2[n] and
Vdint2[n]

clear interrupt
-► return from interrupt

store terms
needed for future

integration
clear interrupt

Figure 4-5 Master/Slave Modified Program Flow

3. Findings

The Master/Slave control algorithm performed satisfactorily on the 20 kW buck

chopper units in the Power Systems Laboratory, Room 100A in Bullard Hall.

However, when tested on the 100 kW units at NSWC a problem was discovered. It was

found that a circulating current due to the 180 degree phase shift was running from one

buck to the other and was causing an error in the current readings measured during the

37

two (2) different phase interrupt subroutines. As the total load current increased, this

differential current also increased and disrupted the proper current sharing desired by the

two (2) units. Mr. Roger Cooley changed the program to read all values and perform all

duty cycle calculations for both the Master and the Slave buck choppers during one phase

interrupt. This "zero phase difference" design and code improved the performance of the

Master/Slave algorithm. This code is also listed in Appendix B.

Thus far, all the programs for the control algorithms run by the Universal

Controller have been written in assembly language. These programs are quite lengthy

and complex. A high-level language, such as C, would increase readability of the code

and reduce the time required for other researchers to understand the program operation.

The next phase of this research dealt with investigating the use of C language programs

for the Universal Controller.

38

V. C PROGRAMMING ISSUES

A. INTRODUCTION

There are two primary reasons that the C programming language was chosen to

implement the control algorithms for the Universal Controller. First, the C language,

being a high-level language, is more compact and more readable than assembly language.

Closed-loop control algorithms with PI controllers use equations that involve relatively

complex mathematical computations. The assembly code used to implement these

equations is also complex and oftentimes difficult to decipher. Several lines of assembly

code are required to do mathematical operations performed by a single line of C code.

The second reason to use C was a matter of convenience.

An ANSI C compiler is supplied with the TMS320C30 microprocessor. This is a

full-featured optimizing compiler that translates ANSI C programs into assembly

language source code. [Ref. 9] The compiler allows for the interlacing of assembly

language instructions into C code and also allows assembly modules to call C modules

and vice versa. Implementing C code was going to be done in steps in order to provide a

measure of testability on existing systems.

The current assembly code is quite extensive. To prevent 'reinventing the wheel,'

the plan was to write only the control algorithm for the buck chopper in C code, leaving

as much of the remaining code intact as possible. This would save a significant amount

of time in coding because the majority of the existing program used for initializing the

system could be used as an assembly module that called the control algorithm in C. The

39

new C code control algorithm could be compared to the already tested assembly

language one (the buck chopper closed-loop control algorithm in Reference 3) to ensure

operability and yet provide the flexibility desired for future modifications. Then, once

the code was tested and working on the buck chopper system in the Power Systems Lab,

the closed-loop algorithm for the ARCP inverter would be written in C. When

completed, it would be inserted into the existing program that runs the inverter in open-

loop mode. This approach would avoid the need to write complicated assembly code for

the ARCP closed-loop algorithm and provide a readable, modifiable closed-loop

algorithm. To write C modules that could 'talk' to the existing assembly code, several

requirements had to be met.

B. C INTERFACE REQUIREMENTS

The TMS320C30 supports interlacing assembly language and C code with its

onboard C compiler. It facilitates the writing of modules both in C and assembly

language, compiling them both in a single step, and linking them together to form one

executable object code. The two types of code will work together as long as some very

specific rules are followed. These rules are outlined in Reference 9 (pages 4-10 through 4-

25) and deal with variable naming and module calling conventions as well as proper

register usage and parameter passing schemes used by the C compiler.

Assembly code modules can call C modules as long as the variables used by the C

compiler are prefaced with an underscore (J in the assembly code. For example, a

variable used by C code called newcount needs to be listed as _newcount in the assembly

language code and defined in the .dss section of the source code. This rule applies to all

constants, variables, and module names called by the C code. This is because the C

40

compiler automatically prefaces all variable names called by a C function with an

underscore (J, so for the two codes to work together, this convention must be followed.

This naming convention was easily complied with by simply changing variable

names in the assembly code. If any of the variables were overlooked, it became evident

during the linking process when "unknown variable" errors surfaced. Further editing

then allowed for error-free compiling and linking. The second requirement for

interfacing code, the register usage/variable passing convention, proved more difficult to

implement.

C. PROBLEMS WITH IMPLEMENTATION IN EXISTING CODE

In order for C code modules and assembly modules to communicate, strict

register conventions must be followed [Ref. 9]. Table 5-1 summarizes the C compiler's

register use and preservation conventions.

Register Use by Compiler Preserved by Call
RO Scalar Return Values No

R1-R3 Integer and Floating Point
Expressions

No

R4-R5 Integer Register Variables Yes
R6-R7 Floating Point Register

Variables
Yes

AR0-AR2 Pointer Expressions No
AR3 Frame Pointer Yes

AR4-AR7 Pointer Register Variables Yes
IR0-IR1 Extended Frame Offsets No

SP Stack Pointer Yes
RC, RS, RE Block Copy No

Table 5-1 Register Use and Preservation Conventions [Ref. 9]]

This table shows the convention that must be followed when interfacing assembly

language modules into C code. According to Reference 9, the called function is

41

responsible for preserving the contents of any used registers. In other words, when C

code calls an assembly language function, the called assembly language function is

responsible for saving and restoring any registers it modifies. Reference 9 further states

that the C compiler must be free to modify registers as needed to accomplish program

requirements which means that the compiler will choose which registers to save and

restore based on Table 5-1. This issue is at the heart of the programming dilemma.

Instead of inserting assembly functions into C code, the previously stated

programming plan intended to insert C code functions into an existing assembly

language program. The problem this created is explained shortly. To further aggravate

the situation, the register convention of the assembly code does NOT follow that stated

by Reference 9. For example, C code uses AR3 as the frame pointer for the program

code, but AR3 is used as a pointer to scratch pad memory and not the current working

frame in the assembly code. Also, the assembly code uses general registers R0-R7 for all

types of uses not just those specified by Table 5-1.

The problems created by inserting C code into assembly language programs that

do not follow the stated register convention stem from the fact that the C programming

language was designed to operate independently of system architecture. [Ref. 12] The

compiler chooses which registers to assign values to, often based on some type of least

cost algorithm. The compiler's algorithm decides which registers to save and restore at

the time the program is compiled. The C language does not have provisions for

mandating which registers are stored and which are not. This means that the calling

assembly program would know which registers the C module would save and restore

based on Table 5-1 but not which registers the C module would use or modify.

42

The first attempt at calling a C function from the assembly code failed because of

this problem. Running the program on the TMS320C30 simulator showed an extensive

amount of data that the assembly code was storing in registers for later use was being

over written by the C code. To try and work around this register saving problem, the

code was modified so that the calling assembly function saved all the registers before

calling the C module and restored them after the return from the C module. This

created a problem with the passing of variables from assembly to C and back again.

When all the registers were saved and restored each time a C module was called,

the parameter passing ability from assembly to C was lost. In order for the C code to use

any values with which to make any calculations, the values first had to be saved in

memory locations accessible to the C module, upon which they could then be modified

by the C code, and finally saved back in memory prior to returning to the assembly

code. This complex scheme of saving all parameters in memory, then saving all registers

on the stack prior to calling C code, then restoring all registers from the stack, and finally

changing those values modified in memory proved more complex than just using the

original assembly code. When this code was run on the simulator, data was still being

lost due to a memory issue caused by the hardware.

Some of the values needed by the C code had to be read from the A/D converters

on the Universal Controller. As stated earlier, these A/D converters have memory

locations assigned to them and conversions are initiated by reading these locations.

However, the memory map used by the TMS320C30 and therefore used by the compiler

identified these locations as illegal memory locations and would not allow C memory

43

pointers to be assigned to them. In order to initiate conversions of the required input

data, the microprocessor had to be forced to read these locations with assembly code.

After several weeks of trying to work around the register saving problem and the

variable passing problem, it was decided to abandon the C code. The final program

written in assembly language that called C modules ended up longer and more complex

than the original assembly code. The final program still lost register information that

prevented it from running properly when switching from assembly code to the C

environment and back again. It was decided the assembly language program would have

to be rewritten to allow the interface with C code modules. Extensive changes in the use

of the registers by the assembly code would have to be made. The time required to do

this proved too great for this thesis research.

Another option would be to write the entire program in C. This would require

extensive research of the TMS320C30's online C run-time libraries and a thorough

understanding of the C programming language. Then C modules could be written to

initialize the microprocessor, provide the required interrupt structure, and initialize the

Universal Controller counter/timers as needed for control algorithm implementation.

This also proved too time consuming for this research effort. The decision was made to

implement the closed-loop ARCP inverter algorithm in assembly language

44

VI. ARCP CONTROL

A. BASIC ARCP INVERTER OPERATION

The topology and operation of an Auxiliary Resonant Commutated Pole (ARCP)

inverter is described in Reference 13. An operational unit was designed by individuals at

the Applied Research Laboratory, Penn State University and delivered to the Power

Systems Laboratory at NPS. It is designed to convert DC voltage into three-phase (3((»)

AC using auxiliary semiconductor devices to implement soft switching. Below is a

circuit block diagram of one phase of the ARCP inverter.

External
Top _
Switch
Control

External
Bottom
Swich —
Control

jut,
I u— ■

Interface
Circuitry
Block

Outer
Controller
Block

Sink
Drive
Circuit

TT

Top Gate

Upper Gate
Drive and
Voltage
Detection -© a =:

TIT

Pump
Drive
Circuit

Lower Gate
Drive and
Voltage
Detection

r€>

<Z3

Current
Detection
Circuitry

I

Current Out

 *

Power
Supply
Block

-CZ3

Figure 6-1 ARCP Inverter Circuit Block Diagram [Ref. 14]

The inverter has two primary switches and two auxiliary switches for each phase. The

inverter operates by applying a changing control signal to the gates of these electronic

switches. Each phase has two main drive circuits and two auxiliary switch drive circuits.

Control signals from the Universal Controller act as inputs to the main drive circuits via

45

optical links. An inner control loop on each phase senses the direction of current flow

and controls the operation of the auxiliary switches. [Ref. 13] During half the cycle, the

pump drive circuit turns on the lower auxiliary switch and the inverter sources current.

During the other half cycle, the sink pump circuit is operating the upper auxiliary switch

and the inverter is a current sink. Onboard controls, which may be overridden, dictate

the firing of the auxiliary devices. If the auxiliary device controls are not overridden,

control of the unit can be accomplished by merely controlling the signal sent to the six

(6) main electronic switches and will be discussed below.

B. OPEN-LOOP CONTROL

The open-loop control program provided by NSWC initializes the Universal

Controller's counter/timers the same way it did for the buck choppers only with 120

degree displacement between phases. This phase difference is created in part by offsetting

the phase interrupts that are used to calculate the control signal duty cycles. The code

that actually performs this function can be found in the init_swct subroutine listed in

Appendix C.

46

switching
frequency
timer C/T1

Counter
0

Counter
1

-tms_swp !► < tms_swp 1» -4 tms_swp 1» —• PLDA

Counter
2

tms_swp_120
4 tms_swp 1 ► ■4 tjns_swp 1«

v
tms swp_120

*—^ ► -4 tms_swp 4 trns_swp

PLDB

PLDC -

C30

[intoj |intl| [into) [_init2_J [intl J [intoj |int2_]

Figure 6-2 Three-Phase Interrupt Initialization [Ref. 3]

The switching period count is calculated from the switching frequency entered from the

host PC and loaded into one of the switching frequency timers. This same count is then

loaded into the next phase counter after being delayed by 2/3 of the period and into the

last counter after another similar delay. This ultimately produces a 120 degree difference

between phase interrupts.

The duty cycle count for the primary switches is based on sine/triangle pulse-

width-modulation (PWM). In PWM, a sine wave at the desired output frequency of the

inverter is superimposed on a fixed-amplitude triangular wave at the desired switching

frequency of the inverter. Each phase will have a similar sinusoidal control signal with

the respective signals 120 degrees out of phase. When the sine wave is greater than the

triangle waveform, the upper switch for the given inverter leg is gated. When the sine

wave is less than the triangle waveform, the lower switch is gated. This creates a voltage

across the lower switch as illustrated in Figure 6-3. The pattern basically may be viewed

as a varying duty cycle applied to the devices in the inverter leg. The amplitude of the

47

sinusoidal control signal directly dictates the amplitude of the resulting phase voltage.

Again, the switching period of the control signal is determined by the switching

frequency entered from the host PC.

time-»

V, dc

o
>

0 -I U

time-*

Figure 6-3 Sine/Triangle Pulse-Width Modulation [Ref. 2]

Figure 6-3 shows that as the amplitude of the sine wave approaches its maximum

value, the duty cycle of the primary switch approaches its maximum. When the sine

wave is at a zero value, the duty cycle is at 50% and decreases to a minimum at the

maximum negative value of the sine wave. Equation (6-1) shows the assembly language

formula that actually implements this type of modulation and calculates the duty count.

48

duty count = tms_ tb* Rl + tms_ ta (6-1)

where

R7 = value read from a sine-wave lookup table

tms_ta = sweep period/2

tmsjb = {sweep period - 2*(dead time)}/2.

Using ta and tb in this manner has the affect of shifting the sine wave output up so the

minimum is at or near zero. This is required for implementation because it is impossible

to load a negative count or have a negative duty cycle. Dead time is used to ensure

proper switch operation. Dead time usually refers to the time between turning the top

switch off and the lower switch on. Both switches conducting at the same time would

cause catastrophic failure of the unit. The ARCP inverter used in this research has

circuitry onboard that controls this situation. The dead time referred to in tms_tb is used

to prevent the duty cycle limits of 5% to 95% from being exceeded. Sine theta is

determined by the use of a look-up table loaded into scratch pad memory and by using

the circular addressing mode of the microprocessor. A detailed explanation of circular

addressing can be found in Reference 8. Below is an example of an instruction that uses

circular addressing.

LDF...*AR7+ + (IR1)%,R7

Basically, an auxiliary register is used as a pointer to the look-up table and an

index register is used as a step size index. The step size tells the pointer how far to step

or index after reading the current value of the table. In this case, the value of the sine

table that pointer AR7 is pointing to is loaded into R7 then the pointer is indexed by the

49

amount in IR1. If the end of the table is reached, the pointer circles around and starts at

the beginning of the table again.

The three phases are kept 120 degrees apart by using three (3) different pointers,

one for each phase, and a double circular addressing scheme for the Phase B and C

pointers that keeps them tied 120 degrees out of phase with the Phase A pointer. Below

is the code for the double circular addressing scheme used for one of the Phase B or C

interrupts. The only difference between the Phase B and Phase C scheme is the value of

IR1. For Phase B it is equivalent to 120 degree displacement and for Phase C it provides

a 240 degree displacement.

LDI AR7,AR6
LDF *AR6++(IR1)%,R7
LDF *AR6++(IR1)%,R7

Recall from above that AR7 is the Phase A pointer to the sine table. The first

line of code copies this pointer to AR6 so that when indexing is done, AR7 is not

changed. AR7 should only increment during the Phase A interrupt. Line one of the

code prevents AR7 from indexing during the Phase B or Phase C interrupt. The next

line is a regular circular addressing instruction. It loads R7 with the value pointed to by

AR6 which in this case equals the current Phase A sine value. AR6 is then incremented

the appropriate 120 or 240 degrees. The circular addressing instruction is then used again

to load the desired sine table value with the proper phase displacement into R7 for use in

Equation 6-1. This double circular scheme is what allows the duty count for each of the

three phases to be calculated during different interrupt subroutines in the program yet

remain exactly 120 degrees apart.

50

Finally, using Equation 6-1, the new duty count is calculated for each phase and

loaded in the corresponding counter/timers. This produces the required modulation

signal which is then exported to the primary switches providing open-loop operation.

Further details about open-loop operation of the ARCP can be found in Chapter 5 of

Reference 3. The next step was to close the loop on the control algorithm.

C. CLOSED-LOOP CONTROL

1. Theory

Closed-loop control, as mentioned earlier, is a method of controlling a system

that uses a portion of the output fed back to modify system operation. This is done to

reduce or eliminate transients and steady state inaccuracies caused by a changing load or

changing inputs. Closed-loop control can be accomplished by using either a current

control mode or a voltage control mode. The current control mode was selected in this

case because the ARCP inverter already has sensors in place that provide scaled

measurements of the system currents. The current control mode allows the inherent

limiting of the current flowing through the semiconductor switches.

Control signals for the ARCP inverter can be established by regulating either

stationary reference frame quantities or synchronous reference frame quantities. As

discussed in Reference 2, using commanded quantities in the synchronous reference

frame are preferred over the stationary reference frame because the steady-state

commanded values are DC levels in the synchronous reference frame. In other words,

when operating in the synchronous reference frame and in a steady state (no

perturbations present), the error term produced by a PI controller will be zero. The

annotation for the control algorithm is shown in Table 6-1.

51

Superscript 's' stationary reference frame quantities

Superscript V synchronous reference frame quantities

Subscripts 'abc' actual phase quantities

Subscripts 'qd' transformed quantities

Superscript '*' commanded or reference quantity

Table 6-1 Closed-Loop Control Algorithm Annotation

The first step of closed-loop control was to sample two (2) phase currents, ia and

ib. This.will exploit the fact that for a three-wire wye-connected AC load, the sum of

the three instantaneous phase currents is zero. The two (2) phase currents were then

transformed into the synchronous reference frame. To make this transformation easier

to follow, it was performed in steps. First, the measured quantities were transformed

into the stationary reference frame using the following diffeomorphic relationship:

1 0
V3 2V3 (6-2)

Once in the stationary reference frame, the following transformation is applied,

placing the quantities into the synchronous reference frame.

cos(0e[n]) -sin(0e[n])"

sin(6>[n]) cos(0e[n])_
"tfnf

(6-3)

Here, 6e is the electrical angle of the measured quantities. The values of sin(öe)

and cos(0e) are found using the sine look-up table described in the previous section. As

mentioned then, a pointer was set for the sine and double circular addressing was used

52

for the cosine as before. Once iq and ied are calculated, they are compared to

commanded values entered from the host PC, z'j'and id. This produced i and idd as

shown by Equation (6-4) and (6-5).

ia,d= irf*[n]-/rf[n]

(64)

(6-5)

The values iqq and idd are next applied to a PI controller to calculate control

voltages, VqP1 and VdPJ. The PI controller equations are given as follows:

VlM = Kpq(iqq) + Kiqjiqqdt (6-6)

VlM = Kpd{idd) + Kid\idddt (6-7)

The control voltages are now inverse transformed to the stationary reference

frame using the following:

KM cos(0e[n]) sin(0e[n])'

-sin(öe[n]) cos(öe[n])
W/H'
V<UnU

(6-8)

These stationary reference frame control voltages, Vq
s
PI and Vd PI, are then

converted to the three different phase control voltages or 'abc' quantities.

V = Vs v
a,PI vq,PI

V3. V =-—Vs --—V5
" k Til » n DT » , 'b,PI 'q,PI d,PI

V = -V - V v c,PI v a,PI v b,PI

(6-9)

(6-10)

(6-11)

Finally, the phase control voltages are used to calculate the new duty counts

needed to produce the desired three-phase (3(|)) AC voltages. The equations for

53

calculating duty count are listed below. This is the same method used in the open-loop

operation (Equation 6-1) except the phase control voltages are used in place of tb. The

new duty counts are then loaded into the appropriate counter/timers to produce the

control signals sent to the ARCP inverter.

dutycounta = V^P[* sin 6+tms_ ta (6-12)

duty count b = Vb PI * sin 6+tms_ ta (6-13)

dutycountc = Vc PI * sin 6+tms_ ta (6-14)

2. Application

The code used to implement the closed-loop control algorithm is enclosed as

interrupt subroutine 0 of Appendix C. Many of the techniques used in previous

applications were used in this code. The same trapezoidal integration scheme was used

for calculating the integrals needed by the PI controller and circular addressing with a

sine wave look-up table was used for angle calculations. One important difference to

note is that only one interrupt was needed for closed-loop control instead of the three

used for open-loop operation. This involved making a slight change to the interrupt

structure. Interrupt Subroutines 1 and 2 were completely eliminated so as to not disrupt

operation of the now longer Interrupt Subroutine 0. The 120 degree difference between

phases is maintained by sampling the currents of two phases and then using those two

samples to calculate what all three duty counts should be when separated by the proper

phase difference. The ARCP code, in its entirety, is enclosed as Appendix C.

54

VII. CONCLUSIONS

A. SUMMARY OF RESEARCH WORK

The PEBB Universal Controller is a digital controller designed to handle the

extensive I/O requirements needed to implement closed-loop control of buck chopper

converters and ARCP inverters. It provides great flexibility and is a valuable tool in the

Navy's efforts to implement a DC ZEDS scheme. The focus of this research was to

expand the operational capabilities of the buck chopper converter control algorithm and

to implement closed-loop control of the ARCP inverter.

In Chapter II, the PEBB Universal Controller operation and architecture were

investigated. The exceptional I/O capability of the Universal Controller was discussed as

was the architecture of the CPU board. Basic program operation was outlined in order

to set the stage for subsequent modifications. The Texas Instrument TMS320C30

microprocessor was discussed in Chapter HL The architecture, powerful instruction set,

and paralleling hardware give the microprocessor exceptional speed and the ability to

handle the tasking of the Universal Controller. Some of this tasking was covered in

Chapter IV. NSWC personnel specified additional software features that had to be

incorporated in the assembly language program governing the operation of the buck

choppers. In Chapter IV the over-current, under-voltage, and over-temperature

protection schemes were introduced and added to the control code. This chapter also

covered modifications needed to provide for Local/Remote switch operation as well as

encoding a Master/Slave paralleling algorithm. Improving the readability of the control

55

algorithms was addressed in Chapter V together with assessing the possibility of using C

code. The several problems that were associated with trying to inject C modules into the

assembly code were discussed. Finally, Chapter VI covered the control of the ARCP

inverter. Basic open-loop operation was discussed and one closed-loop control algorithm

was described and encoded.

B. NOTABLE CONCLUSIONS

The Universal Controller is very flexible. Modifications to the control

algorithms can be made but the assembly language program is quite lengthy and

complex". With no user's manual and little documentation available, a significant amount

of time is required to understand the code well enough to make changes to the control

algorithms. C code algorithms would be easier to read and modify but extensive rework

of the existing program would be required to allow the interlacing of C code modules

with the assembly code. Closed-loop control of the ARCP is achievable with the

Universal Controller allowing fast, accurate response to system perturbations.

C. RECOMMENDATIONS FOR FUTURE WORK

Further work in the area of paralleling buck choppers is needed. The problems

associated with the original 'droop method' and the differential cross current in the

Master/Slave algorithm leave the door open for the development of an algorithm that

would allow control of multiple bucks in parallel yet be able to ensure proper load

sharing. Possible areas of investigation include current share wire or frequency injection

controlling.

Research needs to be done to refine the closed-loop ARCP inverter algorithm

including the possible move to a more specialized control card or even a commercial

56

control card that may not be as I/O capable or flexible as the Universal Controller but

may allow different programming schemes. Another possibility would be to develop a

new control program scheme that is not interrupt driven and that can be implemented in

C, C+ +, visual C+ + or some other high-level language or even possibly completely

rewriting the existing program in C.

The U.S. Navy is looking for ways to save money and at the same time upgrade

operational capabilities. DC ZEDS research is one way of meeting these goals. The

flexibility of the Universal Controller makes it a key component in the DC ZEDS

system and one worthy of further research and development.

57

58

APPENDIX A. SOFTWARE ACCESS AND DOS COMMANDS

A. PROGRAM DEVELOPMENT SOFTWARE TOOLS

In addition to the assembly programs discussed in this thesis, several software

programs are required for implementation of this research. Appendix C of Reference 3

contains a detailed description of several support programs and their use. The

programs are stored on PCPWR7 in Bullard Hall Room 114 and are installed in

various computers throughout the Power Systems Laboratory. Reference 3 outlines

how to install and use the Host PC software and how to install or "burn" code on the

EPROMS used by the Universal Controller. The Host PC software is written in

C++ and designed for use in a Windows 3.1 operating environment. The software

required to install code on the Universal Controller's EPROMs is loaded on

PCPWR8, also located in Bullard Hall Room 114. This is a DOS-based system. Batch

files control much of the software on this system; therefore, a working knowledge of

DOS commands and batch files is required. This Appendix assumes the reader has a

basic knowledge of computers and the use of Windows but that the reader has had

little exposure to DOS.

B. DOS COMMANDS

DOS is the precursor to Windows as an operating system for computers.

Unlike Windows with its graphical user interface, DOS relies on a series of commands

entered at command prompt to govern operation. Below is an example of a DOS

command prompt:

59

C:\>

The "C:" refers to which drive is the current working drive and the backslash

(\) with no other directories after it indicates that the computer is working in the root

directory. The "C:" drive is usually the computer's hard drive or primary memory

storage. Commands, usually letters or short words typed from a keyboard, directly

after the command prompt direct the computer's operations. For the purposes of this

Appendix, the command prompt is shown with each command discussed. Commands

entered by the user are in boldface, and are directly related to using the support

programs required for this thesis.

After applying power to the computer (PCPWR8), the system "boots-up" and

the command prompt appears on the screen. To obtain a listing of directories present

on the C: drive, type dir and press enter.

C:\>dir

The screen will scroll through a listing of all files and sub-directories located in

the root directory. On PCPWR8, the list is too long to fit on the screen. To view the

list one page at a time, type:

C:\>dir/p

This will display the entire listing one page at a time. The files consist of a

filename followed by an extension. For example, on the file npsbuck.asm, npsbuck is

the filename and .asm is the extension. DOS filenames are limited to eight (8)

characters and can be either upper of lower case (DOS is not case sensitive).

Extensions are used to define the file type. Table A-l lists the DOS extensions most

used in this thesis work and the meaning of each extension.

60

Extension Meaning
.asm Assembly language file

.c C language file
.obj object file produced by the assembler
.out output file produced by converting an

object file into the format needed to
program EPROMS

.and command file used to link format
information to the assembly code for

inclusion in the object code
.bat batch file of executable instructions

<dir> sub-directory

Table A-l DOS Extensions

Assembly language code that is to be assembled must have the filename

extension .asm and C language code that is to be compliled must have the filename

extension .c. This code may be written using any text editor the user is familiar with

as long as it is saved with the proper extension. As described in Reference 3, the C

compiler and the Assembly language assembler are loaded on PCPWR8 in the

DSPTOOLS sub-directory on drive C. To switch computer operation to this sub-

directory type:

C:\>cd dsptools

The command "cd" stands for change directory and the command prompt will

change to indicate the new working directory.

C:\DSPTOOLS >

The user is now ready to run the batch file, npsbuck.bat, as described in

Reference 3.

61

C. BATCH FILES

Batch files are files that consist of a series of executable DOS commands. To

run a batch file, the user simply needs to type the name of the file. For example, to

run the batch file that assembles the file npsbuck.asm, the user must type:

C:\DSPTOOLS > npsbuck

As outlined in Reference 3 Appendix C, the input filename is required to be

npsbuck.asm. A listing of the actual batch file explains why this is the case. To view

the batch file, the following command is entered at the command prompt:

C:\DSPTOOLS > type npsbuck.bat

The batch file will then be displayed on the screen

asm30 npsbuck.asm -s -1 -q
lnk30 npsbuck.obj npsbuck.cmd
hex30 -I npsbuck

The first command assembles the file named npsbuck.asm. The letters after the

filename are different options available with the assembler and are defined in Reference

8. For instance, the -1 tells the assembler to create a listing file and the -q suppresses the

banner and all progress information during assembly [Ref. 8]. The second command

links the object file produced by the assembler with the command file named

npsbuck.cmd. The final command converts the object code into the proper hex format

necessary to program an EPROM. The specifics of each instruction and their various

options are described in Reference 8.

62

Batch files are very versatile. They can be written to perform a myriad of

functions. To edit a batch file, use the DOS command edit. The following is typed at

the command prompt

C:\DSPTOOLS > edit npsbuck.bat

An onscreen editor will appear with the contents of the batch file displayed.

The file may now be changed as desired. The arrow keys on the keyboard will move

the cursor. Any command that is present may be changed or any executable DOS

command can be added to or deleted from the file. For instance, npsbuck.asm, located

in the first line of the batch file, could be changed to a different filename thus allowing

different assembly language files to be assembled.

During the course of this research, it became helpful to write program code on

a different computer, save the file on a floppy disk, and assemble the code as discussed

in Reference 3. In DOS, the "a:" drive is usually the floppy disk drive. To access this

drive, the command "a:" is used. This command can be used in conjunction with other

commands to add flexibility to the batch file. For instance, if line one of npsbuck.bat

is changed to read:

asm30 arnpsbuck.asm -c -1 -q

The assembler will now assemble the program npsbuck.asm that is located on

the floppy disk in the a: drive. Another example using the "a:" command is to add the

line:

copy npsbuck.out a:

to the bottom of the batch file npsbuck.bat. This would copy the output file created

by the assembler/linker to the floppy disk located in drive a:.

63

The "a:" command can be used outside of a batch file as well.

C:\DSPTOOLS > copy arnpsbuck.asm

This command will copy the file named npsbuck.asm from the floppy disk in

drive a: to the current working sub-directory, dsptools.

Knowledge of DOS is invaluable for performing research involving the

Universal Controller. The most helpful commands have been discussed in this

Appendix. A more thorough explanation of the workings of DOS and DOS

commands is contained in Reference 17, an MSDOS 6 User's Guide.

64

APPENDIX B. BUCK CHOPPER CONTROL CODE

*
* NPS POWER LAB
* TMS320C30 SSCM CONTROL CODE
* BY RON HANSON
* MODIFIED FOR PARALLEL OPERATION
* BYBOBASHTON NPS (Theoretical)
* ROGER COOLEY NSWC (Coding)
*

* Single Interupt, Zero phase difference
*

* OVER-CURRENT, UNDER-VOLTAGE, OVER-TEMP
* LOCAL/REMOTE SWITCH OPERATION
* BY DAVID FLOODEEN
*

*

.title "BUCK"

.global init
; EPROM Config

.global reset

.global int0,intl,int2,int3

.global tintO

.global isr0,isrl,isr2,isr3

.global timeO
; END EPROM

.global SIN,FPINV,FDIV,divi

A2Dfltr .macro SRC, MSB

Takes two 12bit values in:
b0..bll(LSB)and
Ö16..27 (MSB)

of the SRC and converts the two values into 32bit integer format
Storing the LSB integer in the SRC register and
Storing the MSB integer in the MSB register

The arguments should be Registers

LDI SRC, MSB
LSH 04H, MSB
ASH-14H,MSB
FLOAT MSB
LSH 14H, SRC
ASH -14H, SRC
FLOAT SRC
.endm

65

=(EPROM)== Point the DP register to page 0
;=(Boot)== Init DP register

Clear and enable cache, and disable OVM (1800h)
Clear all interrupts
Load peripheral bus memory-mapped reg

; Init expansion bus control reg

.text
init: NOP ;

LDI 0,DP ;=
;=(Boot)LDI 08H,DP

LDI 00H,ST
LDI 0000HJE
LDI @ctrl,AR0
LDI @xbus,R0
STI R0,*+AR0(60H)
LDI @pbus,R0 ;
STI R0,*+AR0(64H) ; Init primary bus control reg
LDI @stck,SP ; Initialize the stack pointer
CALL init_ct ; Init counter/timer
CALL init_values ; load default value table (L/R_sw)
LDI @d_output,ARO ;
LDI 00FFH,R0 ;
STI R0,*AR0 ;
LDI @ct_port,AR0 ; Pointer for counter/timer control register
LDI @reset_out,RO ;
STI R0,*AR0 ; Disable all output
LDI @ctrl,AR0 ;

LDI @blkl,AR3 ; Sratch pad memory area
LDI @dp_mem,AR4 ; Top of dual port memory
LDI @blkO,AR5 ; Sratch pad memory area
LDI @sram,AR7 ; Top of the look up table
LDI @dp_cint,IRO ; Clear dual port memory interrupt
LDI *+AR4(IR0),R0 ;

LDI 000H,R0 ; Clear sram memory
RPTS 2047 ;
STI R0,*AR4++(1) ;

LDI @dp_mem,AR4 ; Top of dual port memory
LDI 0000HJF ; Clear all flags
LDI 0200H,IE ; Enable interrupt 9 (internal timer 1) (L/R_sw)
OR 02000H,ST ; Global interrupt enable

begin: NOP

BR begin

NOP
NOP
NOP

* Initialize counter/timer

Pointer for counter/timer control register init_ct:LDI @ct_port,AR0
LDI 00ffH,R0
STI R0,*AR0 ; Disable all counter/timer output
LDI @ct_swfreg,AR0 ; Pointer for switching frequency timer 1
LDI 0034H,R0 ; Mode 2 (rate generator), 00110100B
STI R0,*+AR0(3) ;

66

LDI 0074H,R0 ;01110100B
STI R0,*+AR0(3) ;
LDI 00b4H,R0 ;10110100B
STI R0,*+AR0(3) ;
LDI @ct_phasea,ARO ; Pointer for phase a counter
LDI 0012H,R0 ; Mode 1 (hardware retriggerable one-shoot),00010010B
STI R0,*+AR0(3) ;
LDI 0052H,R0 ; Mode 1, R/W LSB, 0101001 OB
STI R0,*+AR0(3) ;
LDI 00b2H,R0 ; Mode 1, R/W LSB & MSB, 1011001 OB
STI R0,*+AR0(3) ;
LDI @ct_phasebAR0 ; Pointer for phase b counter
LDI 0012H,R0 ; Mode 1 (hardware retriggerable), RAV LSB, 00010010B
STI R0,*+AR0(3) ;
LDI 0052H,RO ; Mode 1, RAV LSB, 0101001 OB
STI R0,*+AR0(3) ;
LDI 00b2H,R0 ; Mode 1, R/W LSB & MSB, 10110010B
STI R0,*+AR0(3) ;
LDI @ct_phasec,AR0 ; Pointer for phase c counter
LDI 0012H,R0 ; Mode 1 (hardware retriggerable), RAV LSB, 00010010B
STI R0,*+AR0(3) ;
LDI 0052H,R0 ; Mode 1, RAV LSB, 01010010B
STI R0,*+AR0(3) ;
LDI 00b2H,R0 ; Mode 1, RAV LSB & MSB, 10110010B
STI R0,*+AR0(3) ;

LDI @ctrl,AR0 ; Pointer for counter/timer control register (L/R_sw)
LDI @timlprd,R0 ; load internal timerl period (L/R_sw)
STI R0,*+AR0(38H) ; (L/R_sw)
LDI @timlctl,R0 ; init timerl (L/R_sw)
STI R0,*+AR0(30H) ; (L/R_sw)

RETS
*

init_values: LDI @oaci,*+AR3(tms_oaci) ;load all front panel values for L/R_sw
LDI @acv,*+AR3(tms_acv) ;(L/R_sw)
LDI @bdly,*+AR3(tms_bdly) ;(L/R_sw)
LDI @btime,*+AR3(tms_btime) ;(L/R_sw)
LDI @dci,*+AR3(tms_dci) ;(L/R_sw)
LDI @odci,*+AR3(tms_odci) ;(L/R_sw)
LDI @Vref,*+AR3(tms_Vref) ;(L/R_sw)
LDI @dt,*+AR3(tms_dt) ;(L/R_sw)
LDI @of,*+AR3(tms_of) ;(L/R_sw)
LDI @swf,*+AR3(tms_swf) ;(L/R_sw)
LDI @aci,*+AR3(tms_aci) ;(L/R_sw)
LDI @blk,*+AR3(tms_blk) ;(L/R_sw)
LDI @acs,*+AR3(tms_acs) ;(L/R_sw)
LDI @dcs,*+AR3(tms_dcs) ;(L/R_sw)
LDI @step,*+AR3(tms_step) ;(L/R_sw)
LDI @delay,*+AR3(tms_delay) ;(L/R_sw)
LDI @kc,*+AR3(rms_kc) ;(L/R_sw)
LDI @kcb,*+AR3(tms_kcb) ;(L/R_sw)
LDI @bt,*+AR3(tms_bt) ;(L/R_sw)
LDI @bi,*+AR3(tms_bi) ;(L/R_sw)

67

LDI @L_R_posit,*+AR3(L_R_posit) ;need to init switch posit 0=remote
LDI @command,*+AR3(command) ;(L/R_sw)
LDI @mode,*+AR#(tms_mode) ;(L/R_sw)
RETS

********read_cmd modified for L/R_sw operation

readcmd: LDI *+AR3(L_R_posit),R0 ;read switch posit (L/R_sw)
CMPI 0000H,R0 ;seeifinremote(L/R_sw)
BEQ ck_cmd ;if in remote, go to ck_cmd(L/R_sw)
LDI *+AR3(command),R0 ;if in local, load command 10 (L/R_sw)

addr: LDI @cmd_ad,Rl ;pointer for command address(L/R_sw)
ADDI R1,R0 ;(L/R_sw)
BNZ R0 ;(L/R_sw)

stopinit: RETS ;(L/R_sw)

ck_cmd: LDI *+AR4(l),R0 ; Check command from the PC (L/R_sw)
AND 00FFH,R0 ; Clear all other bits(L/R_sw)
CMPI 01EH,R0 ;(L/R_sw)
BHS stopinit ; Ignore command if command >= 30(L/R_sw)
BR addr ;(L/R_sw)

startcmd: BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdlO
BR cmdlO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO

Off
Test Mode
AC to DC control
Motor Control - Forward
Motor Control - Reverse
Actuator Control - Open
Actuator Control - Close
Actuator Control - Open
Actuator Control - Close
DC to DC Boost
DC to DC Buck

; Stepx
; AC output voltage
; Boost time
; Set current boost limit

68

BR cmdO ;
BR cmdO ;
RETS

* Turning off ARCP
*

cmdO: LDI 08H,IE ; Disable interrupts 0,1,2
LDI @ct_port,AR0 ; Pointer for counter/timer control register
LDI @clear_main,R0 ;
STI R0,*AR0 ; Disable all output
STI R0,*+AR3(tms_outputb);
LDI 030H,R0 ;

wait20: SUBI01H,R0 ;
BNZ wait20 ;
LDI @reset_out,R0 ;
STI R0,*AR0 ; Disable all counter/timer output
CALL init_ct ;
LDI 00H,R0 ;
STI R0,*+AR4(1) ;
LDI @dp_int,IR0 ;
STI R0,*+AR4(IR0) ;
LDI @d_output,AR0 ;
LDI 0FFFH,R0 ;
STI R0,*AR0 ;
LDI @ct_port,AR0 ; Pointer for counter/timer control register
LDI @reset_out,R0 ;
STI R0,*AR0 ; Disable all output
RETS ;

* DC to DC Buck Converter
*

cmdlO:LDI 08H,IE
LDI @ct_port,AR0
LDI @clear_main,R0
STI R0,*AR0
LDI 030H,R0

wait210: SUBI 01H,R0 ;
BNZ wait210
LDI @reset_out,R0
STI R0,*AR0
CALL init_ct
CALL save_serup
CALL init_swct
LDI *+AR3(tms_swp),R0
FLOAT R0
LDF @max,Rl
MPYF R0,R1 ;
STF R1,*+AR3(UMAX) :
MPYF @min,R0 ;
STF R0,*+AR3(UMIN) ;
LDI *+AR3(tms_Vref),R0 ;
FLOAT R0 ;
RND R0 ;
STF R0,*+AR3(tms_Vref);

; Disable interrupts 0,1,2
; Pointer for counter/timer control register

; Disable all output

; Disable all counter/timer output

; Save data in 32-bit format
; Init switching frequency counters

69

; *** Calc limit for Voltage error integrator ***
LDI *+AR3(tms_aci),Rl ;
FLOAT Rl ;

MPYF @en2, Rl ; scale input to percent
MPYF 5.0, Rl ;
RND Rl ;

STF Rl,*+AR3(rms_aci) ;
; *** Calc limit for Current error integrator ***

LDI *+AR3(tms_dci),Rl ;
FLOAT Rl ;

MPYF @en2, Rl ; scale input to percent
RND Rl ;

STF Rl,*+AR3(tms_dci) ;
*

* start up ramp function
*

LDI *+AR3(tms_step),R0;
STI R0,*+AR3(stopfreq);
LDI 000H,R0 ;
STI R0,*+AR3(tms_stepx); Startup
LDI *+AR3(stopfreq),R0;
FLOAT R0 ;
CALL FPINV ;
MPYF *+AR3(tms_Vref),R0;
RND R0 ;
STF R0,*+AR3(vperfreq);
LDF 0000,RO ;
STF R0,*+AR3(tms_Vref);
LDI @ctrl,AR0 ; Load peripheral bus memory-mapped reg
LDI *+AR3(tms_delay),R0;
MPYI 064H,R0 ;
STI R0,*+AR0(28H) ;
LDI @tim0ctl,R0 ;
STI R0,*+AR0(20H) ; In it internal timer 0

*

* voltage and current scaling
*

LDI *+AR3(tms_dcs),R0 ;
FLOAT R0 ;
MPYF @invllbits,R0 ;
RND R0 ;
STF R0,*+AR3(tms_dcscale) ;
LDI *+AR3(tms_acs),R0 ;
FLOAT R0 ;
MPYF @invllbits,R0 ;
RND R0 ;
STF R0,*+AR3(rms_acscale) ;

*

* define hi, hn, hv and T/2
*

LDI *+AR3(tms_swf),R0 ; R0 = fsw
FLOAT R0 ;
MPYF 2.0,R0 ;R0 = 2*fsw=2*fsamp
CALL FPINV ; R0 = Tswp/2

70

; OverCurrent Trip Code

STF R0,*+AR3(tau_2) ; Store T/2

LDI *+AR3(tms_bi),Rl ;
FLOAT Rl ;
MPYF @en4,Rl ;
MPYF R0,R1 ;
RND Rl ;
STF Rl,*+AR3(K_slave) ; >K*T/2
LDI *+AR3(tms_kc),Rl ;
FLOAT Rl ;
MPYF @en4,Rl ;hn
MPYF R1,R0 ;
RND RO ;
STF R0,*+AR3(hn) ; > hn*T/2
LDI *+AR3(tms_kcb),R0
FLOAT RO
MPYF @en4,R0
RND RO
STF R0,*+AR3(hv) ; > hv
LDI *+AR3(tms_bt),R0 ;
FLOAT RO ;
MPYF @en4,R0 ;

RND RO ;
STF R0,*+AR3(hi) ; > hi
LDF 0.0,R0 ;
STF R0,*+AR3(Vdiffa) ; Initialize Vdiff
STF R0,*+AR3(Vd_inta) ; Initialize Vd_int
STF R0,*+AR3(Vdiffb) ; Initialize Vdiff
STF R0,*+AR3(Vd_intb) ; Initialize Vd_int

; OverCurrent Trip Code
STF R0,*+AR3(io_m_116) ; Initialize io_m_l 16
STF R0,*+AR3(io_s_l 16) ; Initialize io_s_l 16
STF R0,*+AR3(trip_m) ; Initialize trip_m
STF R0,*+AR3(trip_s) ; Initialize trip_s

***************************************pjjjjg jjy njijgg Limit to the DAC

LDF *+AR3(tms_acscale),R0 ; acscale is used as current scalefactor
CALL FPINV ; Generate scalefactor for DC OC Limit
LDI *+AR3(tms_odci),Rl ; Read in DC OverCurrent Limit
FLOAT Rl
MPYF Rl, RO ; Scale Threshold Limit Value
RND RO ;
FLX RO ; RO = ampstocounts scalefactor
XOR mask_dac,RO
LDI @dac_l,AR0
STI R0,*AR0 ;Write CurrentLimit to dac_l
LDI @dac_2,AR0
STI R0,*AR0 ;write CurrentLimit to dac_2

71

**J^JY)

LDF 0.0, R0
STF RO, *+AR3(d) ; initialize Master dutycycle

*
**

LDI @ct_port,ARO ; Pointer for counter/timer control register
LDI 00300H,R0 ; 1100000 (disable phase C)
STI R0,*AR0 ; Enable all counter/timer output
STI R0,*+AR3(tms_outputb)

;=*=LDI 010bH,IE ; Enable interrupts 0,1,3,8
LDI 0030bH,IE ; Enable interrupts 0,1,3,8,9

LDI 01H,RO
STI R0,*+AR4(1)
LDI @dp_int,IR0
STI R0,*+AR4(IR0)
RETS

*

save_setup: LDI tblsize,RC ; Init loop counter
RPTB savedp ;
LDI *AR4++(1),R0 ; Start at the top of the dual port memory
AND OffH,R0 ; Mask out all higher bits
LSH 08H,R0 ; Rotate 8 bits to the left
LDI *AR4++(1),R1 ;GetLSB
AND 0ffH,Rl
OR R0,R1

save_dp: STI R1,*AR3++(1) ; Save 32-bit data in internal RAM
LDI @dp_mem,AR4 ; Reset AR4
LDI @blkl,AR3 ; Reset AR3

*

LDI *+AR3(tms_swf),Rl;
* BZ init ; Reset if switching frequency is 0

LDI @swp_const,R0 ; Determine switching period
CALL divi ;
STI R0,*+AR3(tms_swp);

**my change to code to have interupt 1/2 way thru cycle
LDI 02H,R1 ;oldcode: LDI 003H,R1
CALL divi ;
ADDI 10H,R0 ;
STI R0,*+AR3(tms_swp_120)
LDI *+AR3(tms_swp),R0;
LDI R0,R1 ; Determine ta
LSH -1H,R0 ;

* LDI *+AR3(tms_btime),R2;
* SUBI R2,R0 ;

STI R0,*+AR3(tms_ta);
LDI *+AR3(tms_dt),R0; Determine tb
LSH 01H,R0 ;
SUBI R0,R1 ;
LSH -1H,R1 ;
FLOAT Rl ;
RND Rl ;
STF Rl,*+AR3(rms_tb);
LDI *+AR3(tms_of),R0; Determine stepx
LDI *+AR3(tms_blk),Rl;

72

MPYI R1,R0 ;
* BZ init ;

LDI *+AR3(tms_swf),Rl;
CALL divi ;
STI R0,*+AR3(tms_stepx);
LDI *+AR3(tms_btime),Rl
STI Rl,*+AR3(tms_tboost);
LDI *+AR3(tms_oaci),R2;
FLOAT R2 ;

MPYF @en6,R2
STF R2,*+AR3(tms_oaci);—STF R2,*+AR3(tms_ilmin);

RETS ;
*

init_swct:LDI @ct_swfreg,ARO ; Pointer for switching frequency timer 1
LDI *+AR3(tms_swp),R0;

LDI *+AR3(tms_swp),Rl;
STI R0,*+AR0(0) ; Store LSB of counter 0

STI Rl ,*+AR0(1) ; Store LSB of counter 1
LSH -08H,R0 ;

LSH -08H,R1 ;
STI R0,*+AR0(0) ; Store MSB of counter 0
STI R1,*+AR0(1) ; Store MSB of counter 1

NOP
NOP
NOP

LDI *+AR3(tms_swp_120),R2;
checkoutLLDI 0040H,R0 ;

STI R0,*+AR0(3) ; Latch command
LDI *+AR0(l),R0 ;
AND 000FFH,R0 ; Clear all other higher bits
LDI *+AR0(l),Rl ;
LSH 0008H,R1 ;
AND 00f00H,Rl ;
OR R1,R0 ;
CMPI R2,R0 ;
BGT checkout 1 ;
LDI *+AR3(tms_swp),R0;
STI R0,*+AR0(2) ; Store LSB of counter 2
LSH -0008H,R0 ;
STI R0,*+AR0(2) ; Store MSB of counter 2

*

LDI @ct_phasea,ARO ; Pointer for phase a counter
LDI *+AR3(tms_btime),Rl ;
STI R1,*+AR0(0) ; Store LSB of counter 0
LDI *+AR3(tms_bdly),Rl ;
ADDI *+AR3(tms_btime),Rl ;
STI R1,*+AR0(1) ; Store LSB of counter 1
LDI *+AR3(tms_ta),Rl ;
STI Rl ,*+AR0(2) ; Store LSB of counter 2
LSH -08H,R1 ;
STI R1,*+AR0(2) ; Store MSB of counter 2

*

LDI @ct_phaseb,ARO ; Pointer for phase b counter
LDI *+AR3(tms_btime),Rl ;

73

STI R1,*+AR0(0) ; Store LSB of counter 0
LDI *+AR3(tms_bdly),Rl ;
ADDI *+AR3(tms_btime),Rl ;
STI R1,*+AR0(1) ; Store LSB of counter 1
LDI *+AR3(tms_ta),Rl ;
STI Rl ,*+AR0(2) ; Store LSB of counter 2
LSH -08H,R1 ;
STI R1,*+AR0(2) ; Store MSB of counter 2

LDI @ct_phasec,ARO ; Pointer for phase c counter
LDI *+AR3(tms_btime),Rl ;
STI R1,*+AR0(0) ; Store LSB of counter 0
LDI *+AR3(tms_bdly),Rl ;
ADDI *+AR3(tms_btime),Rl ;
STI R1,*+AR0(1) ; Store LSB of counter 1
LDI *+AR3(tms_ta),Rl;
STI R1,*+AR0(2) ; Store LSB of counter 2
LSH -08H,R1 ;
STI R1,*+AR0(2) ; Store MSB of counter 2
LDI *+AR3(tms_btime),R0;
STI R0,*+AR3(tms_tboost);
RETS

isr mode: LDI *+AR3(tms_mode),R0 ;
LDI @mode_ad,Rl ;
ADDI R1,R0 >
BNZ RO J

RETS
*

y

modecmd: BR modeO ;Stop
BR modeO ; Test Mode
BR modeO ; DC to AC Mode
BR modeO ; Motor Control Mode - Forward
BR modeO ; Motor Control Mode - Reverse
BR modeO ; Actuator Control Mode - Open
BR modeO ; Actuator Control Mode - Close
BR modeO ; Linear Actuator Mode - Open
BR modeO ; Linear Actuator Mode - Close
BR mode9 ; DC to DC Boost Mode
BR mode 10 ; DC to DC Buck Mode
BR modeO ; Stop
BR

*
modeO ;Stop

modeO: LDI 08HJE Disable interrupts 0,1,2
LDI @ct_port,AR0 ; Pointer for counter/timer co
LDI @clear_main,R0 ;
STI R0,*AR0 ; Disable all output
LDI 030RR0)

wait30: SUBI 01H,R0 ;
BNZ wait30 ;
LDI @reset_out,R0 ;
STI R0,*AR0 ; Disable all counter/timer output
AND 08H,IF ; Clear all pending interrupts 0,1,2
LDI O0H,R0 ;

74

STI R0,*+AR4(1) ;
LDI @dp_int,IRO ;
STI R0,*+AR4(IR0) ;
RETS ; Return

*

* test
*

mode9: LDI *+AR3(tms_kc),R7 ;
RETS ;

*

* DC to DC Buck Converter
*

modelO:LDF *+AR3(tms_Vref),R0 ;RO=Vref
LDF *+AR3(Vin_inv),Rl ;R1= 1/Vin
LDF *+AR3(Vout),R2 ;R2= Vout
LDF *+AR3(Vdiff),R3 ;*R3= Vdiff(n-1)
LDF *+AR3(iL),R6 ;R6 = iL
SUBF *+AR3(iout),R6 ;R6 = iL-iout
MPYF *+AR3(hi),R6 ;R6 = hi(iL-iout)
MPYF3 R0,R1,R4 ;R4= Dss=Vref/Vin

*s

STF R4,*+AR3(Dss)
*e

SUBF3 R0,R2,R5 ;R5= Vdiff(n) =Vout-Vref
ADDF R5,R3 ;*R3= Vdiff(n)+Vdiff(n-1)
MPYF *+AR3(hn),R3 ;*R3= Vd_int=KcT/2 [Vdiff(n)+Vdiff(n-1)]
ADDF *+AR3(Vd_int),R3 ;*R3= Vd_int(n) = Vd_int +Vd_int(n-1)

j Limit the Integrator
LDF R3.R7 ; R7(temp)=Vd_int(n)
ABSF R7 ;
CMPF *+AR3(tms_aci),R7 ; CMP[abs(Vd_int(n)) - lac]
BLE NoLimlO ; Limit reached stop increasing
LDF *+AR3(Vd_int),R3 ; R3=Vd_int(old)

NoLimlO: NOP ;

LDF *+AR3(Dss),R4 ;restore Dss to R4
SUBF R3,R4 ;R4= D=Dss-Vd_int
SUBF R6,R4 ;R4 = Dss - Vd_int - hi(iL-iout)
LDF *+AR3(hv),R6 ;R6 = hv
MPYF R5,R6 ;R6 = hv(Vout-Vref)
SUBF R6,R4 ;R4 = Dss - Vd_int - hi(iL-iout) - hv(Vout-Vref)

; Limit the duty cycle
HiLim: CMPF @max,R4

BLE LoLim
LDF @max,R4

LoLim: CMPF @min,R4
BGT Same
LDF @min,R4

Same: NOP
; store Master Dutycycle

STF R4,*+AR3(d) ;d = Dss-dl

LDI *+AR3(tms_swp),R7
FLOAT R7

75

MPYF R7,R4
SUBF R4,R7

Here R7 = (1 - d) to compensate for the PEBB EPLD inversion
STF R7,*+AR3(count)

FIX R7
RETS Return

= EPROM ONLY
.sect "vecs"

reset .word init
intO .word isrO
intl .word isrl
int2 .word isr2
int3 .word isr3

; Named section
RS- loads address init to PC
INTO- loads address intO to PC
INT1- loads address intl to PC
INT2- loads address int2 to PC
INT3- loads address int3 to PC

.space 4
tintO .word timeO
tintl .word timel

.space 34
: end EPROM

; Reserved space
; Timer 0 interrupt processing
; Timer 1 interrupt processing

; Reserved space

.data
sram .word 0080000H ;=(EPROM)== Beginning of SRAM (init,cmdl)
;==(BOOT)sram .word 0084000H ;==(BOOT)== Beginning of Sin Table
blkO .word 0809800H ; Beginning address of RAM block 0 (init)
blkl .word 0809C00H ; Beginning address of RAM block 1 (init,

savesetup)
stck .word 0809F00H
Ctrl .word 0808000H

; Beginning of stack (init)
; Pointer for peripheral-bus memory map(init,

cmdl0,cmdl)
xbus .word 0000048H ; Xpansion bus: 2 wait states, extemal(init)

; RDY not in use (88)
pbus .word 0000428H ; Primary bus : IM bank compare, 1 wait(init)
* ; states, external RDY not in use
timOctl .word 00003C1H ; Internal timer 0:1111000001;(301)1100000001
timlctl .word 00003C1H ; Internal timer 1: 1111000001; (301) 1100000001
tim 1 prd .word 007A120H ;7A 120H=500000d, 10MHz, 50%duty =50ms*2=100ms
wait4t .word 0000100H ; (cmdl0,cmdl)
*
*
*

dp_mem .word 0100000H ; Pointer for dual port memory (command reg)

savesetup)
dp_int .word 00003FEH ; Pointer for setting interrupt flag (cmd 10,

; (init,

isr_mode,cmdl)
dp_cint .word 00003FFH ; Pointer for clearing interrupt flag (init)

76

tmsoaci .set 0000001H ; Ac trip current level (savesetup,

set_oc,cmd29)
tms_acv .set
tmsbdly .set
tms_btime .set
tms_dci .set
tms_odci .set
tms_Vref .set
tms_dt .set
tms_of .set
tms_swf .set
tms_aci .set
tms_blk .set

sine_tbl,cmdl)
tms_acs .set
tms_dcs .set
tms_step .set
tmsdelay .set
tmsswp .set

0000002H
0000003H
0000004H

0000005H
0000006h
0000007H

0000008H
0000009H
OOOOOOaH

OOOOOObH
OOOOOOcH

OOOOOOdH
OOOOOOeH
OOOOOOfH
000001OH
0000011H

init_swct,cmdl)
tms_stepx .set 0000012H
tms_ta .set 0000013H
tins tb .set 0000014H

;test
; Boost delay (init_swct)
; Boost time (save_setup, init_swct)

; Dc current
; Dc trip current level(set_oc)

; Dc voltage
; Deadtime (save_setup)
; Ac frequency (save_setup)

; Switching frequency (save_setup)
; Ac current
; Block size (cmdlO,save_setup,

; current sensor
; voltage sensor (set_oc,cmdlO,cmdl)
;Step

; Delay
; Switching period (init,cmdlO,save_setup,

; Step(cmdl0,save_setup,isr0,isrl,isr2,cmd26)
; ta const(init_swct,modelO,save_setup,model)
; tb const(init,cmdlO,save_setup,modelO,cmdl,

model)
tms_kc .set
tms_kcb .set
tinsbt .set
tms_bi .set
tins mode .set

0000015H
0000016H

0000017H
0000018H

0000019H

; (init_pid,model0)

tins_swp_120 .set OOOOOlaH
tmscommand .set 00000 lbH
L_R_posit .set 00000 IcH
Vref_desired .set 00000 ldH
UMIN .set 00000 leH
UMAX .set 00000 lfH
Vdiff .set 0000020H
Vd int .set 0000021H

.set

.set
.set
.set

hn
hv
hi
iL
iout
Vdiffa
Vdiffb
Vd_inta
Vd_intb
Vout
Vininv
DUTY
vperfreq .set

; (initjpid,modelO)
; (init_pid,modelO)

; Mode (isr_mode,cmd27)
; (init_swct,save_setup)
jcommand (L/R_sw)

;Local/remote sw posit (L/R_sw)
;front panel desired Vref (L/R_sw,timel)

; (init_pid,modelO)
; (init_pid,modelO)

; Vout-Vref
; integral of Vdiff

0000022H ;
0000023H
0000024H
0000025H

.set 0000026H
.set 0000027H
.set 0000028H
.set 0000029H
.set 000002aH

.set 000002fH ; DC input (mode 10)
.set 0000030H ;"
.set 0000031H

0000033H ; Volt per frequency ratio

77

stopfreq .set
stopvolt .set
tms_invdv .set
*s
Dss
d

0000034H
0000035H

0000036H

; Target frequecy
; Target voltage

; (init,cmdlO,cmdl)

.set
.set

0000037h
0000038h

count .set 0000039h

tms_tboost .set
tmsacscale .set
tms_dcscale .set
tms_outputb .set
tms_ilmin .set
tblsize .set
K_slave .set
iL_s!ave .set
iL_master .set
ioslave .set
io_master .set
Vin .set

000003aH
000003bH
000003cH
000003eH

000003fH
00000laH

0000040H
0000041H
0000042H

0000043H
0000044H

0000045H

; (save_setup,init_swct,isrO,isrl ,isr2,cmd28)

; (cmdl0,init,cmdl)
; (cmdl0,cmdl)

; (save_setup,cmd29)
; Setup table size (save_setup)

;OverCurrent Trip Code

tripm .set 0000046H ;
trip_s .set 0000047H ;
io_m_116 .set 0000048H ;
io_s_116 .set 0000049H ;
tau_2 .set 000004aH ;

*

ct_swfreg .word 0804000H ; Switching freq timer (init_ct,init_swct)
ct_port .word 0804100H ; Timer control register (ct_port,init_ct,

cmd 10,isr_mode,cmd 1)
ct_phasea .word 0804200H
ct_phaseb .word
ct_phasec .word
d_output .word
dinput .word
inputcs .word
acs
bcs
ccs
dacl
dac 2

.word

.word
.word

.word

.word

0804300H
0804400H
0804500H

0804600H
0804900H

0804a00H
0804b00H
0804c00H

0804700H
0804800H

cmd_ad .int startcmd
modead .intmodecmd
*

mask_int0 .set 0000001H
maskintl .set 0000002H
mask int2 .set 0000004H

; Phase A timer
; Phase B timer (init_ct,init_swct,isrl)
; Phase C timer (init_ct,init_swct,isr2)
; General purpurse D/O port (init,cmdl)

; General purpurse digital input port
; Input voltage and current ADC (init)

; Phase a output V & I ADC (isrl,isr2)
; Phase b output V & I ADC (isr0,isr2)
; Phase c output V & I ADC (isrO.isrl)

; Digital to Analog converter 1
; Digital to Analog converter 2

(read_cmd)
; (isr_mode)

; Set external interrupt 0 (isrO)
; Set external interrupt 1 (isrl)
; Set external interrupt 2 (isr2)

78

mask_int3 .set 0000008H ; Set external interrupt 3 (isr3)
maskJimerO .set OOOO1O0H ; Set internal timer 0 interrupt
mask_timerl .set 0000200H ; Set internal timer 1 interrupt
mask_dac .set 0000800H ; allow 2's comp numbers in dac

clear_main .word 0004444H ; (cmdlO,isr_mode,cmdl)
reset_out .word OOOffffH ; (init,cmdlO,isr_mode,cmdl)

* Define default values L/R sw

oaci .word 300
acv .word 120
bdly .word 10
btime .word 4
dci .word 10
odci .word 200
Vref .word 43
dt .word 14
of .word 60
swf .word 20000
aci .word 10
blk .word 2000
acs .word 50
des .word 500
step .word 50
delay .word 10000
kc .word 17333
keb .word 9
bt .word 105
bi .word 2
L_R_posit .word 00H
command .word 10
mode .word 10

* Define constants
*

swpconst .word 1 OOOOOOC
invllbits .float 0.0()048828
mil .float 0.001 ;<
en7 .float 0.0000001 ;
en6 .float 0.000001
en5 .float 0.00001
en4 .float 0.0001
en3 .float 0.001
en2 .float 0.01
enl .float 0.1
AVE .float 0.2
max .float 0.95
min .float 0.05

; (save_setup)

; (init_pid)

; OverCurrent Trip Code

79

full .float 116.0
limit .float 58.0

*

;=(BOOT)cmd .usect "dualport",10000h ;==(BOOT)=
cmd .usect "dualport",10000h ;==(EPROM)=
*

ctio .usect "xbus",2000h
lookup .usect "ram 1 ",400h
varible .usect "ram2",400h
*

* isrO: SSCM SLAVE UNIT interrupt service rountine
*

;=(BOOT) .sect "isrO"
isrO: NOP ;==(EPROM)=

PUSH ST ; Save registers
PUSH IR1 ;
PUSH R7 ;
PUSHF R7 ;
PUSH R6 ;
PUSHF R6 ;
PUSH R5 ;
PUSHF R5 ;
PUSH R4 ;
PUSHF R4 ;
PUSH R3 ;
PUSHF R3 ;
PUSH R2 ;
PUSHF R2 ;
PUSH Rl ;
PUSHF Rl ;
PUSH R0 ;
PUSHF R0 ;
PUSH ARO ;
PUSH AR1 ;
PUSH AR2 ;

PUSH AR3 ;
PUSH AR4 ;
PUSH AR5 ;

PUSH AR6 ;
PUSH AR7 ;

;==(BOOT)= Named Section

LDI
waitOO: SUBI 01H,R7

BNZ

LDI
LDI

LDI @bcs,AR2
LDI

0A0H,R7

waitOO

@inputcs,AR0
@acs,ARl

@ccs,AR3

; Pointer for DC ADC

80

LDI *ARO,RO
NOP
NOP
LDI *AR1,R1
NOP
NOP
LDI *AR2,R2
NOP
NOP

LDI *AR3,R3
NOP
NOP
LDI 00FH,R7

waitO: SUBI 01H,R7
BNZ waitO

* STORE SAMPLED VOLTAGES AND CURRENTS

LDI *AR0,R0
AND iL_slave(MSB)

NOP
NOP
LDI
NOP

; start conversion

;READ.. Vinput(LSB)

NOP

LDI

LDI
NOP
NOP
*AR3,R4
NOP
NOP
A2Dfltr RO, R7
A2Dfltr R1,R7
A2Dfltr R2, R3
A2Dfltr R4, R5

*AR1 ,R1 ; READ.. Voutput(LSB) AND io_slave(MSB)

*AR2,R2 ; READ.. iL_slave(LSB) AND iL_master(MSB)

; READ.. io_slave(LSB) AND io_master(MSB)

, R0= Vinput(LSB), R7=iL_sIave(MSB)
! Rl= Voutput(LSB), R7=io_slave(MSB)
; R2=iL_slave(LSB), R3=iL_master(MSB)
; R4=io_slave(LSB), R5=io_master(MSB)

LDI *AR0,AR4 ;READ.. Vinput(LSB) AND
iL_slave(MSB)

NOP
NOP
LDI
NOP

NOP
LDI
NOP
NOP

LDI *AR3,AR7
NOP
NOP

*************process gjj^ Accumulate Data

LDI AR4, R6
A2Dfltr R6, R7 ; R6= Vinput(LSB), R7=iL_slave(MSB)
ADDF R6, RO ; R0= Vinput (2)

*AR1,AR5 ; READ.. Voutput(LSB) AND io_slave(MSB)

*AR2,AR6 ; READ.. iL_slave(LSB) AND iL_master(MSB)

; READ.. io_slave(LSB) AND io_master(MSB)

81

LDI AR5, R6
A2Dfltr R6,R7
ADDF R6, Rl

LDI AR6, R6
A2Dfltr R6,R7
ADDF R6, R2
ADDF R7, R3

LDI AR7, R6
A2Dfltr R6,R7
ADDF R6, R4
ADDF R7, R5

; R6= Voutput(LSB), R7=io_slave(MSB)
;Rl=Voutput(2)

; R6=iL_slave(LSB), R7=iL_master(MSB)
; R2 = iL_slave (2)
;R3 = iL_master(l)

; R6=io_slave(LSB), R7=io_master(MSB)
; R4 = iout_slave (2)
; R5 = iout_master (1)

LDI *AR0,AR4 ; READ.. Vinput(LSB) AND iL_slave(MSB)
NOP
NOP
LDI
NOP

NOP
LDI
NOP
NOP

LDI *AR3,AR7
NOP
NOP

********** ***process ^ accumulate Data

LDI AR4, R6
A2Dfltr R6,R7
ADDF R6, RO

*AR1,AR5 ; READ.. Voutput(LSB) AND io_slave(MSB)

*AR2,AR6 ; READ.. iL_slave(LSB) AND iL_master(MSB)

; READ.. io_s!ave(LSB) AND io_master(MSB)

; R6= Vinput(LSB), R7=iL_slave(MSB)
; R0= Vinput (2)

LDI AR5, R6
A2Dfltr R6,R7
ADDF R6, Rl

LDI AR6, R6
A2Dfltr R6,R7
ADDF R6, R2
ADDF R7, R3

; R6= Voutput(LSB), R7=io_slave(MSB)
;Rl=Voutput(2)

; R6=iL_slave(LSB), R7=iL_master(MSB)
;R2 = iL_slave (2)
;R3 = iL_master(l)

LDI AR7, R6
A2Dfltr R6,R7
ADDF R6, R4
ADDF R7, R5

; R6=io_slave(LSB), R7=io_master(MSB)
; R4 = iout_slave (2)
; R5 = ioutjmaster (1)

******** **++t**+*+++++1|,++^+

LDI *AR0,AR4 ; READ.. Vinput(LSB) AND
iL_slave(MSB)

NOP
NOP
LDI *AR1,AR5 ; READ.. Voutput(LSB) AND io_slave(MSB)
NOP

NOP
LDI *AR2,AR6 ; READ.. iL_slave(LSB) AND iL_master(MSB)

82

NOP
NOP

LDI *AR3,AR7 ; READ.. io_slave(LSB) AND io_master(MSB)
NOP
NOP

*************process anl^ Accumulate Data

LDI AR4, R6
A2Dfltr R6,R7
ADDF R6, RO

LDI AR5, R6
A2Dfltr R6,R7
ADDF R6, Rl

LDI AR6, R6
A2Dfltr R6,R7
ADDF R6, R2
ADDF R7, R3

LDI " AR7, R6
A2Dfltr R6,R7
ADDF R6, R4
ADDF R7, R5

; R6= Vinput(LSB), R7=iL_slave(MSB)
; R0= Vinput (2)

; R6= Voutput(LSB), R7=io_slave(MSB)
;Rl=Voutput(2)

; R6=iL_slave(LSB), R7=iL_master(MSB)
; R2 = iL_slave (2)
;R3 = iL_master(l)

; R6=io_slave(LSB), R7=io_master(MSB)
; R4 = iout_slave (2)
; R5 = iout_master (1)

iLslave(MSB)
LDI

NOP
NOP
LDI
NOP

NOP
LDI
NOP
NOP

LDI *AR3AR7
NOP
NOP

*************process an(j Accumulate Data

LDI AR4, R6
A2Dfltr R6,R7
ADDF R6, RO

*AR0AR4 ;READ.. Vinput(LSB) AND

*AR1 AR5 ; READ.. Voutput(LSB) AND io_slave(MSB)

*AR2,AR6 ; READ.. iL_slave(LSB) AND iL_master(MSB)

READ.. io_slave(LSB) AND io_master(MSB)

; R6= Vinput(LSB), R7=iL_slave(MSB)
; R0= Vinput (2)

LDI AR5, R6
A2Dfltr R6,R7
ADDF R6, Rl

LDI AR6, R6
A2Dfltr R6,R7
ADDF R6, R2
ADDF R7, R3

LDI AR7, R6
A2Dfltr R6,R7
ADDF R6, R4

; R6= Voutput(LSB), R7=io_sIave(MSB)
;Rl=Voutput(2)

; R6=iL_slave(LSB), R7=iL_master(MSB)
;R2 = iL_slave (2)
;R3 = iL_master(l)

; R6=io_slave(LSB), R7=io_master(MSB)
; R4 = iout_slave (2)

83

ADDF R7, R5 ; R5 = iout_master (1)

POP AR7 ;
POP AR6 ;

POP AR5 ;
POP AR4 ;

POP AR3
POP AR2
POP AR1
 Calculate System Voltages
MPYF @AVE,R0
MPYF *+AR3(tms_dcscale),R0 ;
RND RO
STF R0,*+AR3(Vin)

MPYF @AVE,R1
MPYF *+AR3(tms_dcscale),Rl ;
RND Rl
STF Rl,*+AR3(Vout)

MPYF @AVE,R2
MPYF *+AR3(tms_acscale),R2

RND R2
STF R2,*+AR3(iL_slave)

MPYF @AVE,R3
MPYF *+AR3(tms_acscale),R3

RND R3
STF R3,*+AR3(iL_master)

MPYF @AVE,R4
MPYF *+AR3(tms_acscale),R4

RND R4
STF R4,*+AR3(io_slave)

; STORE Input voltage Vin

; STORE Output voltage Vout

MPYF @AVE,R5
MPYF *+AR3(tms_acscale),R5

RND R5
STF R5,*+AR3(io_master)

; OverCurrent Trip Code

LDF @full,R7 ; R7=116.0
SUBF .R7,R5 ; R5=io_master(n)-116.0
LDF *+AR3(io_m_116),R7 ; R7=io_master(n-l)-116.0
STF R5,*+AR3(io_m_116) ; Save io_master(n) for next pass
ADDF R5,R7 ; R7=Sum of n andn-1
LDF *+AR3(tau_2),R5 ; R5=T/2
MPYF R5,R7 ; R7=T/2(n+ n-l)
LDF *+AR3(trip_m),R5 ; R5 previous integral total
ADDF R5.R7 ; R7 Total integral value
BN clrtripm ; Assuring non-negative integral
STF R7,*+AR3(trip_m) ; Stores trip_m(n) for next pass

84

LDI @cmd_ad,R5 ; Jump target if needed for shutdown
LDF @limit,R6 ; R6=58.0 integral limit
SUBF R6,R7 ;
BNN R5 ; Shuts down Bucks
BR iokm ; Branch to output current okay

clrtripm: LDF 0.0,R5 ;
STF R5,*+AR3(trip_m) ; Resets integral if negative

iokm: LDF *+AR3(io_master),R5 ; Resets R5 to io_master

LDF @full,R7 ; R7=116.0
SUBF R7,R4 ; R4=io_slave(n)-116.0
LDF *+AR3(io_s_116),R7 ; R7=io_slave(n-l)-116.0
STF R4,*+AR3(io_s_116) ; Save io_slave(n) for next pass
ADDF R4,R7 ; R7=Sum ofn andn-1
LDF *+AR3(tau_2),R4 ; R4=T/2
MPYF R4,R7 ; R7=T/2(n+ n-l)
LDF *+AR3(trip_s),R4 ; R4 previous integral total
ADDF R4,R7 ; R7 Total integral value
BN clrtrips ; Assuring non-negative integral
STF -R7,*+AR3(trip_s) ; Stores trip_s(n) for next pass
LDI @cmd_ad,R4 ; Jump target if needed for shutdown
LDF @limit,R6 ; R6=58.0 integral limit
SUBF R6,R7 ;
BNN R4 ; Shuts down Bucks
BR ioks ; Branch to output current okay

clrtrips: LDF 0.0,R4 ;
STF R4,*+AR3(trip_s) ; Resets integral if negative

ioks: LDF *+AR3(io_slave),R4 ; Resets R4 to ioslave

ADDF3 R4,R5,R0
RND R0
STF R0,*+AR3(iout) ; STORE THE TOTAL OUTPUT CURRENT iout

ADDF3 R2,R3,R0
RND R0
STF R0,*+AR3(iL) ; STORE THE TOTAL Inductor CURRENT iL

— Calculate —> Iouterror
SUBF R4, R5 ; R5= Vdiff(n) = (io_master - ioslave)

LDF *+AR3(Vin),R0
CALL FPINV ;
RND R0 ;
STF R0,*+AR3(Vin_inv) ; STORE 1/Vin

LDF *+AR3(Vdiffa), R3 ; Prepare for Trapzd integration....
STF R3, *+AR3(Vdiff) ; by loading old (n-1) values into Vdiff
LDF *+AR3(Vd_inta), R0 ; and Vd_int
STF R0, *+AR3(Vd_int) ;
 TRAPZD INTEGRATION from Mode 10 Routine

LDF *+AR3(Vdiff) ,R3 ;*R3= Vdiff(n-1)
ADDF R5,R3 ;R3= Vdiff(n)+Vdiff(n-1)

85

MPYF *+AR3(K_sIave),R3 ; R3= Vd_int=K*T/2 [Vdiff(n)+Vdiff(n-1)]
ADDF *+AR3(Vd_int),R3 ; R3= Vd_int(n) = Vd_int + Vd_int(n-1)

; Limit the Integrator
LDF R3,R7 ; R7(temp)=Vd_int(n)
ABSF R7 ;
CMPF *+AR3(tms_dci),R7 ; [abs(Vd_int(n)) - Idc]
BLE NoLimO ; Limit reached stop increasing
LDF *+AR3(Vd_int),R3 ; R3=Vd_int(old)

NoLimO: NOP ;
; Save Integ quantities for next time

RND R5
STF R5,*+AR3(Vdiffa)
RND R3
STF R3,*+AR3(Vd_inta)

; Get Master DutyCycle **************************
*

LDF *+AR3(Vdiffb),R0
STF R0,*+AR3(Vdiff)
LDF *+AR3(Vd_intb),R0
STF R0,*+AR3(Vd_int)
CALL isrmode ;

; Save Integ quantities for next time
RND R5
STF R5,*+AR3(Vdiffb)
RND R3
STF R3,*+AR3(Vd_intb)

; Write the Master Duty to A phase CTC (SI) ********************
LDI @ct_phasea,ARO ; Pointer for phase A counter
STI R7,*+AR0(2) ; Store LSB of counter 2
LSH -08H,R7 ;
STI R7,*+AR0(2) ; Store MSB of counter 2

*

; UPDATE SLAVE DUTY CYCLE**************************
LDF *+AR3(d), R4 ; R4 = (Dss - d 1) --> master dutycycle
ADDF *+AR3(Vd_inta), R4 ; R4 = (Dss - d 1) + Vd_int

*

LDF *+AR3(tms_oaci),R0 ;R0=kp (GUI value oaci)
MPYF *+AR3(Vdiffa), RO ;RO=kp(iomaster-ioslave)
ADDF RO, R4 ;R4=(Dss-dl)+Vdint+kp(iomaster-iosIave)

* ; =Master_Duty+integ(ki*io_err)+kp(io_err)
; Limit the duty cycle
HiLimO: CMPF @max,R4

BLE LoLimO
LDF @max,R4

LoLimO: CMPF @min,R4
BGT SameO
LDF @min,R4

SameO: NOP

LDI *+AR3(tms_swp),R7 ;
FLOAT R7 ;
MPYF R7,R4 ;

SUBF R4,R7 ; R7= duty = tms_swp - (R4* tms_swp)
; Here R7 = (1 - d) to compensate for the PEBB EPLD inversion

86

FIX R7 ;
 Write the Slave Duty to B phase CTC (SI) *********************

LDI @ct_phaseb,ARO ; Pointer for phase B counter
STI R7,*+AR0(2) ; Store LSB of counter 2
LSH -08H,R7 ;
STI R7,*+AR0(2) ; Store MSB of counter 2

**

Overtem/undervoltage protection (L/R_sw)
Gen I/O word bitO = overtemp slave, bitl = overtemp master

bit2 = control voltage slave, bit3 = control voltage master
LDI @d_output,ARO ;set pointer to Gen I/O
STI *AR0,R0 ;R0=gen_I/O word
AND 000fH,R0 ;mask all but 4 lsbs
LDI @cmd_ad,R4 ; Jump target if needed for shutdown
CMPI 0fH,R0 ;see if word is good
BNE R4 ; Shuts down Bucks

POP ARO ;
POPF RO ;
POP RO ;
POPF Rl ;
POP Rl ;
POPF R2 ;
POP R2 ;
POPF R3 ;
POP R3 ;
POPF R4 ;
POP R4 ;
POPF R5 ;
POP R5 ;
POPF R6 ;
POP R6 ;
POPF R7 ;
POP R7 ;
POP IR1 ;
POP ST ;

ANDN mask_intO,IF ; Clear interrupt 0
RETI ; Return and enable interrupt

* isrl: SSCM MASTER UNIT — interrupt service rountine
*

;=(BOOT) .sect "isrl" ;=(BOOT)== Named Section
isrl: NOP ;=(EPROM)=

ANDN mask_intl,IF ; Clear interrupt 1
RETI ; Return and enable interrupt

isr2: Phase C interrupt service rountine
*

;==(BOOT) .sect "isr2" ;=(BOOT)= Named Section
isr2: NOP ;=(EPROM)==

87

ANDN mask_int2,IF ; Clear interrupt 2
RETI ; Not Used

* irs3: Dual port memory interrupt service rountine

;=(BOOT) .sect "isr3" ;=(BOOT)== Named Section
isr3: NOP ;==(EPROM)=

PUSH ST ; Save registers
PUSH DP ;
PUSH IR1 ;
PUSH R7 ;
PUSHF R7 ;
PUSH R6 ;
PUSHF R6 ;
PUSH R5 ;
PUSHF R5 ;
PUSH R4 ;
PUSHF R4 ;
PUSH R3 ;
PUSHF R3 ;
PUSH R2 ;
PUSHF R2 ;
PUSH Rl ;
PUSHF Rl ;
PUSH RO ;
PUSHF RO ;

*

LDI @dp_cint,IRO ;
LDI *+AR4(IR0),R0 ; Clear interrupt
CALL readcmd ;
ANDN mask_int3,IF ; Clear interrupt 3

POPF RO
POP RO
POPF Rl
POP Rl
POPF R2
POP R2
POPF R3
POP R3
POPF R4
POP R4
POPF R5
POP R5
POPF R6
POP R6
POPF R7
POP R7
POP IR1
POP DP
POP ST
NOP

88

NOP
RETI ; Return and enable interrupt

* timerO: Startup timer

.sect "timeO"
;=(EPROM)==

;(BOOT)
timeO: NOP

PUSH RO ;
PUSHF RO ;
PUSH ARO ;
LDI *+AR3(tms_stepx),R0;
ADDI 01H,RO ;
STI R0,*+AR3(tms_stepx);
CMPI *+AR3(stopfreq),R0;
BLE looptimerO ;
LDI OO0H,RO ;
LDI @ctrl,AR0 ;
STI R0,*+AR0(20H) ; Clear counter
ANDN mask_timer0,IE ; Disable timer interrupt
POP ARO ;
POPF RO ;
POP RO ;
RETI ;

looptimerO: LDF *+AR3(vperfreq),R0;
ADDF *+AR3(tms_Vref),R0;
RND RO ;
STF R0,*+AR3(tms_Vref);
POP ARO ;
POPF RO ;
POP RO ;
RETI ;

;=(BOOT)== Named Section

* timer 1: 100ms Timer
*

;=(BOOT) .sect
timel: NOP

PUSH ST
PUSH DP
PUSH IR1
PUSH R7
PUSHF R7
PUSH R6
PUSHF R6
PUSH R6
PUSHF R5
PUSH R4
PUSHF R4
PUSH R3
PUSHF R3
PUSH R2

"time 1" ;=(BOOT)== Named Section
;=(EPROM)=

89

PUSHF R2
PUSH Rl
PUSHF Rl
PUSH RO
PUSHF RO
PUSH ARO

*

LDI *+AR3(L_R_posit),Rl ;get previous L/R posit
LDI @d_output,ARO ;set pointer to Gen I/O
STI *AR0,R0 ;R0=gen_I/O word
AND 0010H,R0 ;mask all but L/R sw posit (bit4)
CMPI 00H,R0 ;if 0, in remote
BEQ remote

local: LDI 303H,IE ;disables int3 in local mode
CMP R0,R1 ;see if sw same as last interrupt
BEQ update_vref ;if in local, update vref and endint

;if sw is now in L from R, shutdown and restart in local mode
STI R0,*+AR3(L_R_posit) ;save current sw posit
call cmdO ;to shutdown unit

restart: call readcmd ;to restart
BR Endint

update_vref: LDF R0,*+AR3(tms_Vref) ;get Vref from memory
LDI @adcl_cs, ARO ;pointer to ADC for front panel
LDI *AR0,R1 ;Ioads old data,inits new read
NOP
NOP ;2 nops for delay
LDI *AR0,R1 ;read in new Vref from front panel
A2Dfltr R1,R7 ;to extract front panel voltage if needed
MPYF *+AR3(tms_dcscale),Rl ;scale the word to make actual voltage
STF Rl,*+AR3(Vref_desired) ;store front panel as desired Vref
SUBF3 R0,R1,R2 ;R2=R1-R0 (Vdesired-Vref)
CMPF 10.0.R2 ;see if greater than 10V increase
BLE nostep

step: LDI 00H,*+AR3(tms_stepx) ;set counter to zero
MPYF @enl,R2 ;R2=voltage difference/10
FIX R2 ;make R2 an integer
LDI R2,*+AR3(stopfreq) ;use R2 as number of steps required
LDF 10.0,*+AR#(vperfreq) ;10v is the step size
LDI @ctrl,AR0 ;
LDI @tim 1 prd,R0 ;load 100ms period
STI R0,*+AR0(28H) ;load in timerO
LDI @tim0ctrl,R0
STI R0,*+AR0(30H) ;init timerO for step
BR Endint

no_step: LDF Rl,*+AR3(tms_Vref) ;if no step req'd, save front panel as Vref
BR End_int

remote: LDI 30bH,IE ;enable intr 0,1,3,8,9
CMP R0,R1 ;see if previous sw posit matches present

90

BEQ Endjnt ;if still in remote, end intr

;if sw changed from local and now in remote, shutdown and wait for PC command
STI R0,*+AR3(L_Rjposit) ;store present sw posit for later
call cmdO ;to shutdown bucks

Endjnt: ANDN maskJimerl,IF; RESET timer interrupt Flag
POP ARO
POPF RO
POP RO
POPF Rl
POP Rl
POPF R2
POP R2
POPF R3
POP R3
POPF R4
POP R4
POPF R5
POP- R5
POPF R6
POP R6
POPF R7
POP R7
POP IR1
POP DP
POP ST
RETI

.end

91

92

APPENDIX C. ARCP CLOSED-LOOP CONTROL CODE

NPS POWER LAB
TMS320C30 CONTROL CODE

BY TUAN DUONG NSWC

MODIFIED FOR CLOSED-LOOP CONTROL OF THE ARCP
BY DAVID FLOODEEN

*

.title "PEBB"

.global reset,init

.global int0,intl,int2,int3

.global tintO

.global isr0,isrl,isr2,isr3

.global timeO

.global SIN,FPINV,divi

.sect "vecs"
reset .word init ;
intO .word isrO ;
intl .word isrl ;
int2 .word isr2 ;
int3
*

.word isr3 ;

.space 4
tintO .word timeO
tintl .word timel

*
.space 33

.data
sram .word 0080000H
blkO .word 0809800H
blkl .word 0809C00H
stck .word 0809F00H
Ctrl .word 0808000H
xbus .word 0000048H

pbus .word 0000428H

Named section
RS- loads address init to PC
INTO- loads address intO to PC
INT1- loads address intl to PC
INT2- loads address int2 to PC
INT3- loads address int3 to PC

; Reserved space
; Timer 0 interrupt processing
; Timer 1 interrupt processing

; Reserved space

; Beginning address of SRAM
; Beginning address of RAM block 0
; Beginning address of RAM block 1

; Beginning of stack
; Pointer for peripheral-bus memory map

; Xpansion bus: 2 wait states, external RDY
; not in use (88)

; Primary bus : IM bank compare, 1 wait states,
; external RDY not in use

; Internal timer 0: 1111000001; (301) 1100000001
; 40H1 (lOus)

; Internal timer 1:1111000001; (301) 1100000001
;40Hl(2ms)

timOctl .word 00003C1H
timOprd .word 0000064H
timlctl .word 00003C1H
timlprd .word 0004E20H
wait4t .word 0000100H ;
*

dp_mem .word 0100000H ; Pointer for dual port memory (command reg)
dp_int .word 00003FEH ; Pointer for setting interrupt flag
dp_cint .word 00003FFH ; Pointer for clearing interrupt flag

93

dp_cmd .set 0000000H ; Command register
dpoaci .set 0000002H ; Ac trip current level
dp_acv .set 0000004H ; Ac voltage
dpbdly .set 0000006H ; Boost delay
dp_btime .set 0000008H ; Boost time
dp_dci .set OOOOOOaH ; Dc current
dp_odci .set OOOOOOch ; Dc trip current level
dp_dcv .set OOOOOOeH ; Dc voltage
dp_dt .set OOOOOlOH ; Deadtime
dpof .set 0000012H ; Ac frequency
dp_swf .set 0000014H ; Switching frequency
dp_aci .set 0000016H ; Ac current
dpblk .set 0000018H ; Block size
dpacs .set 00000laH ; Ac sensor
dp_dcs .set 00000IcH ; Dc sensor
dp_step .set 00000leH ;Step
dp_delay .set 0000020H ; Delay
dp_swp .set 0000022H ; Switching period
dp_stepx .set 0000024H ;Step
dpta .set 0000026H ; ta constant
dptb .set 0000028H ; tb constant
dp_kc .set 000002aH)
dp_kcb .set 000002cH)
dp_bt .set 000002eH 5

dp_bi .set 0000030H)
dp_mode .set
*

0000032H ; Mode

*

tms_cmd .set OOOOOOOH ; Command register
tms_oaci .set 0000001H ; Ac trip current level
tmsacv .set 0000002H ; Ac voltage
tms_bdly .set 0000003H ; Boost delay
tms_btime .set 0000004H ; Boost time
tms_dci .set 0000005H ; Dc current
tms_odci .set 0000006h ; Dc trip current level
tms_dcv .set 0000007H ; Dc voltage
tms_dt .set 0000008H ; Deadtime
tms_of .set 0000009H ; Ac frequency
tms_swf .set OOOOOOaH ; Switching frequency
tms_aci .set OOOOOObH ; Ac current
tmsblk .set OOOOOOeH ; Block size
tms_acs .set OOOOOOdH ; Ac sensor
tms_dcs .set OOOOOOeH ; Dc sensor
tms_step .set OOOOOOfH ;Step
tms_delay .set OOOOOlOH ; Delay
tms_swp .set OOOOOl1H ; Switching period
tms_stepx .set 0000012H ;Step
tms_ta .set 0000013H ; ta constant
tms_tb .set 0000014H ; tb constant
tms_kc .set 0000015H 5

tms_kcb .set 0000016H »
tms_bt .set 0000017H)
tms_bi .set 0000018H »
tms mode .set 0000019H ; Mode

94

tms_swp_120 .set 00000 laH ;
tms cos .set 00000lbH ;offset for pointer to cos in sin table
*tms_23 .set
tins tractor .set
UMIN
UMAX
INA
INB
INC
iq_int
id_int
iqq
idd
T_2
tmsiqe
tms_ide
Kpq
Kiq
Kpd
Kid
*c_vl
*d_i
*d_v
*

.set
.set

.set

.set

.set
.set
.set

.set

.set
.set

.set

.set
.set
set
.set
set

.set
.set
.set
.set

x_v .set
vperfreq .set
stopfreq .set
stopvolt .set
tms_invdv .set
tms_dtset .set
dmax .set
dmin .set
tmstboost .set
tms_acscale .set
tms_dcscale .set
tms_intbits .set
tms_outputb .set
tms ilmin .set

'x 1
*

00000IcH
00000ldH
00000leH
00000lfH

0000020H
0000021H
0000022H
0000023H
0000024H

0000025H
0000026H
0000027H

0000028H
0000029H

000002aH
000002bH
000002cH
000002dH

000002eH
000002fH
0000030H
0000031H
0000032H
0000033H
0000034H
0000035H

0000036H
0000037H

0000038H
0000039H

000003aH
000003bH
000003cH

000003dH
000003eH

000003fH

running total of iq_integral
running total of idintegral

; difference between iqe* and iqe
; difference between ide* and ide
; tau/2 for use in integrating

; commanded value iqe*
; commanded value ide*

; constant for closed loop
; constant for closed loop
; constant for closed loop

; constant for closed loop
s

; DC input

; Xtra v and i ADC

; Volt per frequency ratio
; Target frequecy
; Target voltage

tblsize .set 00000laH ; Setup table size

ports .word 0804500H ; Pointer for i/o ports
ctswfreg .word 0804000H ; Switching frequency timer
ct_port .word 0804100H ; Timer control register
ct_phasea .word 0804200H ; Phase A timer
ct_phaseb .word 0804300H ; Phase B timer
ct_phasec .word 0804400H ; Phase C timer
doutput .word 0804500H ; General purpurse digital output port
dinput .word 0804600H ; General purpurse digital input port
dac_l .word 0804700H ; Digital to Analog converter 1
dac_2 .word 0804800H ; Digital to Analog converter 2
inputcs .word 0804900H ; Input voltage and current ADC
acs .word 0804a00H ; Phase a output voltage and current ADC
bcs .word 0804b00H ; Phase b output voltage and current ADC

95

ccs .word 0804c00H
adclcs .word 0804d00H
adc2_cs .word 0804e00H

cmd_ad .int startcmd
mode ad .int mode cmd

; Phase c output voltage and current ADC
;ADC 1
;ADC2

mask intO .set 0000001H ; Set external interrupt 0
maskjntl .set 0000002H ; Set external interrupt 1
mask int2 .set 0000004H ; Set external interrupt 2
mask_int3 .set 0000008H ; Set external interrupt 3
masktimerO .set 0000100H ; Set internal timer 0 interrupt
maskjimerl .set 0000200H
*

; Set internal timer 1 interrupt

*

clear_ main .word 0004444H
resetout .word OOOffffH
allon .set 0000000H
a_on .set 0000000H
a_a3 ".set 0000001H
a_a4 .set 0000002H)
b on .set 0000000H
b a3 .set 0000004H
b_a4 .set 0000008H >
con .set 0000000H
c_a3 .set 000001OH
c a4 .set 0000020H >
* Define constants
*

onejji .float 3.14159263590
two_pi .float 6.28318530718
swpconst .word 10000000
sqrt2 .float 1.414213562373
sqrt3 .float 1.73205080757
sqrt3_3 .float 0.57735026919
sqrt23_3 .float 1.15470053838
half .float 0.5 ;
halfl2 .float 2048
invl lbits .float 0.00048828125
tenu .float 0.00001
mil .float 0.0001 ;
bi .float 0.2 ;
umax .float 0.05 ;
urn in .float -0.05
acdcconst .float 0.009765625
acdchalf .float 0.00048828125
acdcmax .float 1.0
acdcmin .float -1.0
zero float 0.0
ave float 3.2 ;

tbmax .set 40
tbmin .set 10 ;

96

cmd .usect "dualport",10000h
ctio .usect "xbus",2000h
lookup .usect "ram l",400h
varible .usect "ram2",400h

*
*

.text

* ST — CPU status register
* IE — CPU/DMA interrupt enable flags
* IF - CPU interrupt flags
* IOI
*

' - I/O flags

* The status register has the following arrangement:
♦Bits: 31-14 13 12 11 10 9 8 7 6 5 4 3 2 10
* Function: Resrv GIE CC CE CF Res. RM OVM LUF LV UF N Z V C
*
*

*R0:
*R1:
*R2: -

*R3:
*R4:
* R5: Saved during interrupt 0,1,2
* R6: Saved during interrupts 0,1,2
* R7: Saved during interrrupts 0,1,2
*

* ARO:
*AR1:
*AR2:
*AR3: POINTER FOR INTERNAL MEMORY BLOCK 1 (do not change)
*AR4: POINTER FOR DUAL-PORT MEMORY (do not change)
*AR5: POINTER FOR INTERNAL MEMORY BLOCK 0 (do not change)
*AR6: POINTER FOR SINEWAVE LOOKUP TABLE (do not change)
*AR7:
*

POINTER FOR SINEWAVE LOOKUP TABLE (do not change)

*IR0:
*IR1:
*

Saved during interrupts 0,1,2

init: LDI 0,DP ; Point the DP register to page 0
LDI 00H,ST ; Clear and enable cache, and disable OVM (1800h)
LDI 0000H,IE ; Clear all interrupts '
LDI @ctrl,AR0 ; Load peripheral bus memory-mapped reg
LDI @xbus,R0 ;
STI RO,*+AR0(60H) ; Init expansion bus control reg
LDI @pbus,R0 ;
STI R0,*+ARO(64H) ; Init primary bus control reg
LDI @stck,SP ; Initialize the stack pointer
CALL initct ; Init counter/timer
LDI @d output,AR0 ;
LDI 00FFH,R0 ;
STI R0,*AR0 ;
LDI @ct_port,AR0 ; Pointer for counter/timer control register
LDI @reset_out,R0 ;
STI RO,*AR0 ; Disable all output

97

*
*

LDI @ctrl,ARO

*

LDI @blkl,AR3 ; Sratch pad memory area
LDI @dp_mem,AR4 ; Top of dual port memory
LDI @bIkO,AR5 ; Sratch pad memory area
LDI @sram,AR7 ; Top of the look up table
LDI @dp cintJRO ; Clear dual port memory interrupt
LDI *+AR4(IR0),R0 >
LDI 000H,R0 ; Clear sram memory
RPTS 2047 ;
STI R0,*AR4++(1) i

LDI @dp mem,AR4 ; Top of dual port memory
LDI 0000H.IF ; Clear all flags
LDI 0008HJE ; Enable interrupt 3 (dual port memory)

*
OR 02000H,ST ; Global interrupt enable

*

begin: NOP
NOP
NOP

*
*

BR begin ;

; Check command
; Clear all other bits

read_cmd: LDI *+AR4(l),R0
AND 00FFH,R0
CMPI 01EH,R0 ;
BHS stopinit ; Ignore command if command >= 23
LDI @cmd_ad,Rl ;
ADDI R1,R0 ;
BNZ R0 ;

stopinit: RETS ;

startcmd: BR cmdO
BR cmdl
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO

Off
Test Mode ARCP CONTROL
AC to DC control
Motor Control - Forward
Motor Control - Reverse
Actuator Control - Open
Actuator Control - Close
Actuator Control - Open
Actuator Control - Close
DC to DC Boost
AC to DC Control

98

BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
BR cmdO
RETS

; Stepx
; AC output voltage
; Boost time
; Set current boost limit

* Turning off ARCP
*

cmdO: LDI 08H,IE ; Disable interrupts 0,1,2
LDI @ct_port,AR0 ; Pointer for counter/timer control register
LDI @clear_main,R0 ;
STI R0,*AR0 ; Disable all output
STI R0,*+AR3(tms_outputb);
LDI 030H,R0

wait20: SUBI01H,R0
BNZ wait20
LDI @reset_out,R0
STI R0,*AR0 ; Disable all counter/timer output
CALL initct ;
LDI 00H,R0 ;
STI R0,*+AR4(1) ;
LDI @dp_int,IR0 ; .
STI R0,*+AR4(IR0) ;
LDI @d_output,AR0 ;
LDI OFFFH,R0 ;
STI R0,*AR0 ;
LDI @ct_port,AR0 ; Pointer for counter/timer control register
LDI @reset_out,R0 ;
STI R0,*AR0 ; Disable all output
RETS ;

* Test Mode
*

cmdl: LDI
LDI
LDI
STI
LDI

waitll: SUBI 01H,R0
BNZ waitll
LDI @reset_out,R0
STI R0,*AR0 ; Disable all counter/timer output

08H,IE ; Disable interrupts 0,1,2
@ct_port,AR0 ; Pointer for counter/timer control register
@clear_main,R0 ;
R0,*AR0 ; Disable all output
030H,R0

CALL init_ct
LDI @sram,AR7
CALL save_setup

; Reset pointer for phase a
; Save data in 32-bit format

99

CALL setoc ;
CALL init_swct ; Init switching frequency counters
CALL sine_tbl ; Generate a SINE lookup table
LDI *+AR3(tms_acv),R0;
FLOAT RO ;
MPYF @sqrt2,R0 ;
RND RO ;
STF R0,*+AR3(tms_acv);

LDF *+AR3(tms_invdv),R0;
CALL FPINV ;
LDI *+AR3(tms_swp),Rl;
FLOAT Rl ;
LDF @half,R2
MPYF3 R1,R2,R3 ;R3=T/2
RND R3
STF R3,*+AR3(T_2) ;store T/2 for use in integrating
MPYF R1,R0 ;
MPYF @half,R0 ;
RND RO ;
STF R0,*+AR3(tms_dtset);
LDF *+AR3(tms_tb),R0;
STF R0,*+AR3(dmax) ;
NEGF RO ;
STF R0,*+AR3(dmin) ;
LDF 0.5,R0 ;
STF R0,*+AR3(INA) ;
STF R0,*+AR3(INB) ;
STF R0,*+AR3(INC) ;

LDF @zero,R0 ;
STF R0,*+AR3(iq_int);

STF R0,*+AR3(id_int);
STF R0,*+AR3(iqq) ;
STF R0,*+AR2(idd) initialize these to zero

LDI *+AR3(tms_acs),R0;
FLOAT RO ;
MPYF @invllbits,RO ;
RND RO ;
STF R0,*+AR3(tms_acscale);
LDI *+AR3(tms_dcs),R0;
FLOAT RO ;
MPYF @invllbits,RO ;
RND RO ;
STF R0,*+AR3(tms_dcscale);

LDI *+AR3(tms_blk),R0;
LDI 04H,R1 ;
CALL divi ;
LDI R0,R1 ;
STI R0,*+AR3(tms_cos); Reset pointer for cos function
LDI *+AR3(tms_blk),BK;

100

LDI @ctrl,ARO ; Load peripheral bus memory-mapped reg
LDI @timlprd,R0 ; 10ms
STI R0,*+AR0(38H) ;
LDI @timlctl,R0 ;
STI R0,*+AR0(30H) ; Init internal timer 1
LDI @d_output,AR0 ;
LDI 0OFEH,R0 ;
STI R0,*AR0 ;
LDI @wait4t,R0

wait31: SUBI 01H,R0
BNZ wait31

LDI @ct_port,AR0 ; Pointer for counter/timer control register
LDI allon,R0 ;
STI R0,*AR0 ; Enable all counter/timer output
STI R0,*+AR3(tms_outputb);
LDI 0209H,IE ; Enable interrupts 0,3,9
LDI 01H,R0 ;
STI R0,*+AR4(1) ;
LDI @dp_int,IR0 ;
STI R0,*+AR4(IR0) ;
RETS ;

* Initialize counter/timer

initct: LDI @ct_port,AR0 ; Pointer for counter/timer control register
LDI 00ffH,R0 ;
STI R0,*AR0 ; Disable all counter/timer output
LDI @ct_swfreg,AR0 ; Pointer for switching frequency timer 1
LDI 0034H,R0 ; Mode 2 (rate generator), 00110100B
STI R0,*+AR0(3) ;
LDI 0074H,R0 ;01110100B
STI R0,*+AR0(3) ;
LDI 00b4H,R0 ;10110100B
STI R0,*+AR0(3) ;
LDI @ct_phasea,AR0 ; Pointer for phase a counter
LDI 0012H,R0 ; Mode 1 (hardware retriggerable one-shoot), 0001001 OB
STI R0,*+AR0(3) ;
LDI 0052H,R0 ; Mode 1, R/W LSB, 01010010B
STI R0,*+AR0(3) ;
LDI 00b2H,R0 ; Mode 1, R/W LSB & MSB, 10110010B
STI R0,*+AR0(3) ;
LDI @ctjphaseb,AR0 ; Pointer for phase b counter
LDI 0012H,R0 ; Mode 1 (hardware retriggerable), R/W LSB, 00010010B
STI R0,*+AR0(3) ;
LDI 0052H,R0 ; Mode 1, R/W LSB, 01010010B
STI R0,*+AR0(3) ;
LDI 00b2H,R0 ; Mode 1, R/W LSB & MSB, 10110010B
STI R0,*+AR0(3) ;
LDI @ct_phasec,AR0 ; Pointer for phase c counter
LDI 0012H,R0 ; Mode 1 (hardware retriggerable), R/W LSB, 00010010B

101

STI R0,*+AR0(3) ;
LDI 0052H.R0 ; Mode 1, R/W LSB, 0101001 OB
STI R0,*+AR0(3) ;
LDI 00b2H,R0 ; Mode 1, R/W LSB & MSB, 1011001 OB
STI R0,*+AR0(3) ;
RETS

*

save_setup: LDI tblsize,RC ; Init loop counter
RPTB savedp ;
LDI * AR4++(1),R0 ; Start at the top of the dual port memory
AND 0ffH,R0 ; Mask out all higher bits
LSH 08H,R0 ; Rotate 8 bits to the left
LDI *AR4++(1),R1 ; Get LSB
AND 0ffH,Rl ;
OR R0,R1 ;

save_dp: STI R1,*AR3++(1) ; Save 32-bit data in internal RAM
LDI @dp_mem,AR4 ; Reset AR4
LDI @blkl,AR3 ; Reset AR3

*

LDI *+AR3(tms_swf),Rl;
* BZ init ; Reset if switching frequency is 0

LDI @swp_const,R0 ; Determine switching period
CALL divi ;
STI R0,*+AR3(tms_swp);
LDI 003H,R1 ;
CALL divi ;
MPYI 02H,R0 ;
ADDI 10H,R0 ;
STI R0,*+AR3(tms_swp_120)
LDI *+AR3(tms_swp),R0;
LDI R0,R1 ; Determine ta
LSH -1H,R0 ;

* LDI *+AR3(tms_btime),R2;
* SUBI R2,R0 ;

STI R0,*+AR3(tms_ta);
LDI *+AR3(tms_dt),R0; Determine tb
LSH 01H,R0
SUBI R0,R1
LSH -1H,R1
FLOAT Rl
RND Rl ;
STF Rl,*+AR3(tms_tb);
LDI *+AR3(tms_of),R0; Determine stepx
LDI *+AR3(tms_blk),Rl;
MPYI R1,R0 ;

* BZ init ;
LDI *+AR3(tms_swf),Rl;
CALL divi ;
STI R0,*+AR3(tms_stepx);
LDI *+AR3(tms_btime),Rl
STI Rl,*+AR3(tms_tboost);
LDI *+AR3(tms_oaci),R2;
FLOAT R2 ;
STF R2,*+AR3(tms_ilmin);

102

RETS

* set overcurrent reference values
*

set_oc: LDI 0FFFH,R0 ;
MPYI *+AR3(tms_oaci),R0;
LDI *+AR3(tms_acs),Rl;
CALL divi ;
LDI @dac_l,AR0 ;
STI R0,*AR0 ;
LDI 0FFFH,R0 ;
MPYI *+AR3(tms_odci),R0;
LDI *+AR3(tms_dcs),Rl;
CALL divi ;
LDI @dac_2,AR0 ;
STI R0,*AR0 ;
RETS

*

* sinetbl: this routine generates a SINE lookup table with length equals
* to the value stored in dp_blk memory location
*
sine_tbl: LDI *+AR3(tms_blk),RC; Get size of lookup table

LDI RC,R0 ;
SUBI 0001H,RC ;

* BLS init ; Reset if size is too small
FLOAT RO ;
CALL FPINV ; 1/blk
LDF @two_pi,Rl ; Store 2*pi value
MPYF R1,R0 ; 1/blk * 2 * pi
RND RO ;
LDF R0,R6 ; Save the result
LDF 0.0,R7 ;
RPTB savejbl ;
MPYF3 R6,R7,R0 ; 1/blk * count * 2 * pi
CALL SIN ;
RND RO ;
ADDF 1.0,R7 ; Increment count

savejbl: STF R0,*AR7++(1) ; Save data into lookup table
LDI @sram,AR7 ; Restore lookup table pointer
RETS ;

*
*

init_swct:LDI @ct_swfreg,ARO ; Pointer for switching frequency timer 1
LDI *+AR3(tms_swp),R0;
STI R0,*+AR0(0) ; Store LSB of counter 0
LSH -08H,R0 ;
STI R0,*+AR0(0) ; Store MSB of counter 0
NOP
NOP
NOP
LDI *+AR3(tms_swp_120),R2;

103

checkoutO:LDI OOOOH,RO ;
STI R0,*+AR0(3) ; Latch command
LDI *+ARO(0),RO ;
AND 000FFH,R0 ; Clear all other higher bits
LDI *+AR0(0),Rl ;
LSH 0008H,R1 ;
AND 00fD0H,Rl ;
OR R1.R0 ;
CMPI R2,R0 ;
BGT checkoutO ;
LDI *+AR3(tms_swp),R0;
STI R0,*+AR0(1) ; Store LSB of counter 1
LSH -0008H,R0 ;
STI R0,*+AR0(1) ; Store MSB of counter 1
NOP
NOP
NOP
LDI *+AR3(tms_swp_120),R2;

checkoutlrLDI 0040H,R0 ;
STI R0,*+AR0(3) ; Latch command
LDI *+AR0(l),R0 ;
AND 000FFH,R0 ; Clear all other higher bits
LDI *+AR0(l),Rl ;
LSH 0008H,R1 ;
AND 00f00H,Rl ;
OR R1,R0 ;
CMPI R2,R0 ;
BGT checkout 1 ;
LDI *+AR3(tms_swp),R0;
STI R0,*+AR0(2) ; Store LSB of counter 2
LSH -0008H,R0 ;
STI R0,*+AR0(2) ; Store MSB of counter 2

LDI @ct_phasea,ARO ; Pointer for phase a counter
LDI *+AR3(tms_btime),Rl ;
STI R1,*+AR0(0) ; Store LSB of counter 0
LDI *+AR3(tms_bdly),Rl ;
ADDI *+AR3(tms_btime),Rl ;
STI Rl ,*+AR0(1) ; Store LSB of counter 1
LDI *+AR3(tms_ta),Rl ;
STI Rl ,*+AR0(2) ; Store LSB of counter 2
LSH -08H.R1 ;
STI Rl ,*+AR0(2) ; Store MSB of counter 2

*

LDI @ct_phaseb,ARO ; Pointer for phase b counter
LDI *+AR3(tms_btime),Rl ;
STI R1,*+AR0(0) ; Store LSB of counter 0
LDI *+AR3(tms_bdly),Rl ;
ADDI *+AR3(tms_btime),Rl ;
STI R1,*+AR0(1) ; Store LSB of counter 1
LDI *+AR3(tms_ta),Rl ;
STI Rl ,*+AR0(2) ; Store LSB of counter 2
LSH -08H.R1 ;
STI R1,*+AR0(2) ; Store MSB of counter 2

104

LDI @ct_phasec,ARO ; Pointer for phase c counter
LDI *+AR3(tms_btime),Rl ;
STI R1,*+AR0(0) ; Store LSB of counter 0
LDI *+AR3(tms_bdly),Rl ;
ADDI *+AR3(tms_btime),Rl ;
STI R1,*+AR0(1) ; Store LSB of counter 1
LDI *+AR3(tms_ta),Rl;
STI Rl ,*+AR0(2) ; Store LSB of counter 2
LSH -08H,R1 ;
STI Rl ,*+AR0(2) ; Store MSB of counter 2
LDI *+AR3(tms_btime),R0;
STI R0,*+AR3(tms_tboost);
RETS

isr_mode: LDI *+AR3(tms_mode),R0
LDI @mode_ad,Rl ;
ADDI R1,R0 ;
BNZ RO ;
RETS ;

mode and: BR modeO ;Stop
BR model Test Mode (ARCP Open-loop)
BR modeO DC to AC Mode
BR modeO Motor Control Mode - Forward
BR modeO Motor Control Mode - Reverse
BR modeO Actuator Control Mode - Open
BR modeO Actuator Control Mode - Close
BR modeO Linear Actuator Mode - Open
BR modeO Linear Actuator Mode - Close
BR modeO DC to DC Boost Mode
BR modeO DC to DC Buck Mode
BR modeO Stop

*
BR modeO Stop

modeO: LDI 08H,IE ; Disable interrupts 0,1,2
LDI @ct_port,AR0 ; Pointer for counter/timer control register
LDI @clear_main,R0 ;
STI R0,*AR0 ; Disable all output
LDI 030H,R0 ;

wait30: SUBI 01H,R0 ;
BNZ wait30 ;
LDI @reset_out,R0 ;
STI R0,*AR0 ; Disable all counter/timer output
AND 08H,IF ; Clear all pending interrupts 0,1,2
LDI 00H.R0 ;
STI R0,*+AR4(1) ;
LDI @dp int,IR0 ;
STI R0,*+AR4(IR0) ;
RETS ;F Return

model: MPYF *+AR3(tms_tb),R7;

105

Disable timer interrupt

FIX R7 ;
ADDI *+AR3(tms_ta),R7;
RETS ; Return

* timerO: Motor startup timer
*

timeO: PUSH RO ;
PUSHF RO ;
PUSH ARO ;
LDI *+AR3(tms_stepx),RO;
ADDI 01H,R0 ;
STI R0,*+AR3(tms_stepx);
CMPI *+AR3(stopfreq),R0;
BLT looptimerO ;
LDI 000H.R0 ;
LDI @ctrI,AR0 ;
STI R0,*+ARO(20H) ; Clear counter
ANDN mask_timerO,IE
POP ARO
POPF RO
POP RO
RETI ;

looptimerO: LDF *+AR3(vperfreq),R0;
ADDF *+AR3(tms_acv),R0;
RND RO ;
STF R0,*+AR3(tms_acv);
POP ARO
POPF RO
POP RO
RETI ;

*

* timerl: Discharging circuit

timel: PUSH RO ;
PUSHF RO ;
PUSH ARO ;
LDI @d_output,ARO ;
LDI 0FFH,R0 ;
STI R0,*AR0 ;
LDI 000H,R0 ;
LDI @ctrl,AR0 ;
STI R0,*+AR0(30H) ; Clear counter

Disable timer interrupt ANDN mask_timerl,IE
POP ARO
POPF RO
POP RO
RETI ;

* irsO: Phase A interrupt service routine
**isrO for closed-loop control of ARCP resonant converter

♦written by David Floodeen
*

106

isrO: PUSH
PUSH

ST
IR1

PUSH R7
PUSHF R7
PUSH R6
PUSHF R6
PUSH R5
PUSHF R5
PUSH R4
PUSHF R4
PUSH R3
PUSHF R3
PUSH R2
PUSHF R2
PUSH Rl
PUSHF Rl
PUSH RO
PUSHF RO
PUSH ARO

Save registers

wait:

LDI
LDI
LDI
LDI
LDI
SUBI
BNZ

@acs,ARO
@bcs,AR2
*ARO,RO
*AR2,R1
00cH,R2
01H,R2
wait

; Pointer for phase a A/D converter
; Pointer for phase b A/D converter
; initiate a new conversion (don't use these values, they are time-late)

; delay loop to allow time for the slower A/D converters

* READ and STORE SAMPLED CURRENTS
*

LDI *AR0,R0 ; READ Va AND ia
LDI *AR2,R2 ; Read Vb and ib

***Get ia and ib... Assuming ia is msb of A/D word as in Tuan's code
LSH 04H,R0
ASH -14H,R0
FLOAT RO ; RO = ia

LSH 04H,R2
ASH -14H,R2
FLOAT R2 R2 = ib

* This section scales the A/D current using a scaling factor to make them
* actual currents
* Final output of this section RO = ia, R2 = ib

***assuming tms_acscale is set to the current scaling word calculated by Ron Hanson*"

MPYF *+AR3(tms_acscale),R0
RND RO ;R0 = ia
STF R0,*+AR3(ia) ; STORE ia

107

MPYF *+AR3(tms_acscale),R2
RND R2 ;R2 = ib
STF R2,*+AR3(ib) ; STORE ib

*This section reads sin_theta and cos_theta from the lookup table

** »assuming tms_cos is block size / 4 vice tms_13 or tms_23

LDI *+AR3(tms_stepx),IRl ;
LDF *AR7++(IR1)%,R6 ;R6 = sinjheta

LDI *+AR3(tms_cos),IRl ;
SUBI *+AR3(tms_stepx),IRl ;subtract step to compensate for previous increment
LDI AR7,AR6 ;use AR6 to not further increment AR7
LDF * AR6++(IR1)%,R7 ;read twice to get desired value in R7
LDF *AR6++(IR1)%,R7 ;R7 = cosjheta

*This section converts ia and ib to iqs and ids then to iqe and ide

***assumes sqrt3_3 = (root3)/3, sqrt23_3 = (2root3)/3

LDF R0,R1 ;RO = iqs = ia = Rl

MPYF @sqrt3_3,Rl
MPYF @sqrt23_3,R2
SUBF R2,R1

MPYF3 R7,R0,R2
MPYF3 R6,R1,R3
SUBF R3,R2

MPYF3 R6,R0,R3
MPYF3 R7,R1,R4
ADDF R4,R3

"This section calculates iqq and idd

Rl=(root3)/3*ia
R2=(2root3)/3*ib
Rl = ids = (root3/3)ia-(2root3/3)ib

R2=iqs(cos_theta)
R3=ids(sin_theta)
R2=iqe=iqs(cos_theta)-ids(sin_theta)

R3=iqs(sin_theta)
R4=ids(cos_theta)
R3=ide=iqs(sin_theta)+ids(cos_theta)

LDF *+AR3(tms_iqe),R0
SUBF R2,R0
LDF *+AR3(tms_ide),Rl
SUBF R3,R1

R0=iqq=iqe* - iqe

Rl=idd=ide* - ide

♦Integrate using trapazoidal method to calculate iq_int and idint
* and calculates Vqe and Vde
***assumming iq_int, id_int, iqq, idd initialized = 0
***assumming T_2 = T/2 is calculated already

LDF R0,R2 ;R0=R2=iqq
ADDF *+AR3(iqq),R2 ;R2=iqq[n-l]+iqq[n]
STF R0,*+AR3(iqq) ;store iqq for next time
MPYF *+AR3(T_2),R2 ;R2=T/2(iqq[n-l]+iqq[n])
ADDF *+AR3(iq_int),R2 ;R2=iq_int[n-l]+T/2(iqq[n-l]+iqq[n])

108

STF R2,*+AR3(iq_int)
MPYF *+AR3(Kiq),R2 ;
MPYF *+AR3(Kpq),R0 ;
ADDF R0,R2

;store iq_int for next time

;R2=Vqe

LDF R1,R3 ;Rl=R3=idd
ADDF *+AR3(idd),R3 ;R3=idd[n-l]+idd[n]
STF Rl,*+AR3(idd) ;store idd for next time
MPYF *+AR3(T_2),R3 ;R3=T/2(idd[n-l]+idd[n])
ADDF *+AR3(id_int),R3 ;R3=id_int[n-l]+T/2(idd[n-l]+idd[n])
STF R3,*+AR3(id_int) ;store id_int for next time
MPYF *+AR3(Kid),R3 ;
MPYF *+AR3(Kpd),Rl ;
ADDF R1,R3 ;R3=Vde

♦This section transforms Vqe and Vde to Vqs and Vds

MPYF3 R2,R7,R0
MPYF3 R3,R6,R1
ADDF R1,R0

MPYF3 R3,R7,R1
MPYF3 R2,R6,R4
SUBF R4,R1

;R0=Vqe*cos theta
;Rl=Vde*sin theta
;R0=Vqs

;Rl=Vde*cos theta
;R4=Vqe*sin theta
;Rl=Vds

♦This section transforms Vqs and Vds to Va, Vb, Vc
***assumes @half=.5, @sqrt3=1.7320508, @zero=0.0

LDF R0,R3

MPYF @half,R0
MPYF @half,Rl
MPYF @sqrt3,Rl
LDF @zero,R2
SUBF3 R0,R2,R4
SUBF R1,R4

SUBF3 R3,R2,R5
SUBF R4,R5

;Vqs=R0 = R3=Va

;R0=.5Vqs
;Rl=.5Vds
;Rl=(root3)Vds/2
;R2=0.0
;R4= -.5Vqs
;R4= -.5Vqs-(root3)Vds/2 = Vb

;R5= -Va
;R5= -Va-Vb = Vc

*This section calculates new duty_counta, b, c

;R3=Va*sin theta

;R3=dutycount_a

MPYF R6,R3
ADDF *+AR3(tms_ta),R3
FIX R3

MPYF R6,R4
ADDF *+AR3(tms_ta),R4
FIX R4

MPYF R6,R5
ADDF *+AR3(tms_ta),R5
FIX R5

;R4=Vb*sin theta

;R4=dutycount_b

;R5=Vc*sin theta

;R5=dutycount_c

109

/

This section loads new duty_counta, b, c

LDI @ct_phasea,ARO
STI R3,*+AR0(2)
LSH -08H,R3
STI R3,*+AR0(2)

LDI @ct_phaseb,ARO
STI R4,*+AR0(2)
LSH -08H,R4
STI R4,*+AR0(2)

LDI @ct_phasec,ARO
STI R5,*+AR0(2)
LSH -08H,R5
STI R5,*+AR0(2)

;stores lsb of counter

;stores msb of counter

jstores lsb of counter

jstores msb of counter

jstores lsb of counter

;stores msb of counter

♦This section clears the interupt and the stack

ANDN maskintOJF ; Clear interrupt 0

POP ARO
POPF RO
POP RO
POPF Rl
POP Rl
POPF R2
POP R2
POPF R3
POP R3
POPF R4
POP R4
POPF R5
POP R5
POPF R6
POP R6
POPF R7
POP R7
POP IR1
POP ST

RETI ; Return and enable interrupt

isrl: Phase B interrupt service rountine

; Return interrupt not used
isrl: NOP

RETI
*

* isr2: Phase C interrupt service rountine
isr2: NOP

RETI ; Return interrupt not used
*

irs3: Dual port memory interrupt service rountine

110

isr3: PUSH ST ; Save registers
PUSH DP ;
PUSH IR1 ;
PUSH R7 ;
PUSHF R7 ;
PUSH R6 ;
PUSHF R6 ;
PUSH R5 ;
PUSHF R5 ;
PUSH R4 ;
PUSHF R4 ;
PUSH R3 ;
PUSHF R3 ;
PUSH R2 ;
PUSHF R2 ;
PUSH Rl ;
PUSHF Rl ;
PUSH RO ;
PUSHF RO ;

LDI @dp_cint,IRO ;
LDI *+AR4(IRO),RO ; Clear interrupt
CALL read_cmd ;
ANDN mask_int3,IF ; Clear interrupt 3

POPF RO
POP RO
POPF Rl
POP Rl
POPF R2
POP R2
POPF R3
POP R3
POPF R4
POP R4
POPF R5
POP R5
POPF R6
POP R6
POPF R7
POP R7
POP IR1
POP DP
POP ST

RETI ; Return and enable interrupt

.end

111

112

LIST OF REFERENCES

1. Dade, T.B., "Advanced Electric Propulsion, Power Generation, and Power
Distribution," Naval Engineers Journal, Vol. 106, No. 2, pp. 83-92, March, 1994.

2. Oberley, M. J., "The Operation and Interaction of the Auxiliary Resonant
Commutated Pole Converter in a Shipboard DC Power Distribution Network,"
Master's Thesis, Naval Postgraduate School, Monterey, CA, 1996.

3. Hanson, R. J., "Implementing Closed-loop Control Algorithms for DC-to-DC
Converters and ARCP Inverters Using the Universal Controller," Electrical Engineer
Thesis, Naval Postgraduate School, Monterey, CA, June, 1997.

4. Fisher, M. J., Power Electronics, PWS-Kent Publishing Company, Boston, 1991.

5. NSWC/CDAD Schematics, Code 813, Annapolis, 1995.

6. Intel, "AP-70 Using the INTEL MCS 51 Boolean Processing Capabilities", Intel
Corporation, 1998.

7. MAXIM, "MAX120/MAX122 Data Sheet," Sunnyvale, CA, 1994.

8. Texas Instruments, "TMS320C3x User's Guide," Texas Instruments, Inc., 1994.

9. Texas Instruments, "TMS320 Floating-Point DSP Optimizing Compiler," Texas
Instruments, Inc., 1991.

10. Texas Instruments, "TMS320 Floating-Point DSP Assembly Language Tools," Texas
Instruments, Inc., 1991.

11. Texas Instruments, "TMS320C3X C Source Debugger," Texas Instruments, Inc.,
1993.

12. Deitel H.M., Deitel P.J., C How to Program, Prentice-Hall, Inc., 1994.

13. DeDoncker, R.W., Lyons, J.P., "The Auxiliary resonant Commutated Pole
Converter," IEEE-IAS Annual Meeting Proceedings, 1990 pp. 1228-1235.

14. Mayer, J.S., Salberta, F, "High-Frequency Power Electronic Converter For Propulsion
Applications," Final Technical Report, Department of Electrical Engineering and the
Applied Research Laboratory, Perm State University, University Park, PA

113

15. Microsoft, "MS-DOS 6 User's Manual", Microsoft Corporation, 1993.

114

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
8725 John J. Kingman Rd., STE 0944
Fort Belvoir, Virginia 22060-6218

2. Dudley Knox Library 2
Naval Postgraduate School
411 Dyer Rd.
Monterey, California 93943-5101

3. Chairman, Code EC 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5121

4. John Ciezki, Code EC/Cy 3
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5121

5. Robert Ashton, Code EC/Ah 3
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5121

6. David L. Floodeen 2
137 Moreell Circle
Monterey, California 93940

115

